A. A two-dimensional periodic solid is defined by a unit cell containing a single H atom. Its electronic structure can be described by an orthogonal tight-binding model in which the generic basis set element, $|\mathbf{R}\rangle$, represents the H 1s orbital at the position **R**. Use Bloch theorem to compute the expectation value of the following operator over a generic eigenstate of the system

$$\hat{O} = \sum_{\mathbf{R}} O_{\mathbf{R}} |\mathbf{R}\rangle \langle \mathbf{R} | \, .$$

Here $O_{\mathbf{R}}$ is a scalar number dependent on the atomic position \mathbf{R} and the sum runs over all the atoms. What is the meaning of the operator, if $O_{\mathbf{R}} = 1$ for every \mathbf{R} ? What is its expectation value?

B. Now consider the triangular lattice of H atoms shown in the figure. Each atom occupies the corner of equilateral triangles of side $a_0 = 1$.

Derive the band structure equation for such a system by using an orthogonal nearest neighbor tightbinding model in which every H atom is described by a single H 1s orbital. Take ϵ as on-site energy and t as hopping parameter.

- C. Plot the band structure along the directions $\Gamma \to A \to B$, where $\Gamma = (0,0)$, $A = (\pi,0)$, $B = (\pi, \pi/\sqrt{3})$. For the plot use the values $\epsilon = 0$ eV and t = -1 eV.
- D. Calculate and plot the two-dimensional Fermi surface for such lattice when the Fermi energy is $E_{\rm F} = -6 + \delta \, {\rm eV}$, with being δ a small positive quantity [use the same values for ϵ and t as those in C)].

Marking Scheme: A) 6 points, B) 6 points, C) 7 points, D) 6 points.