Consider the 2D solid pictured below composed of two atom-thick simple cubic lattices of H atoms placed on top of each other. The distance between two adjacent atoms on a plane is $a=1$.

1. The electronic structure of such solid can be described by an orthogonal tight-binding model using the $1 s$ orbitals of H as basis set. Write the expression for the 2 D band structure when the on-site energy is ϵ, the nearest neighbors hopping parameter between H atoms on the same lattice is t_{0} and the hopping parameter between H atoms sitting on different lattices is t_{1}.
2. By taking the numerical values $\epsilon=0, t_{0}=-2$ and $t_{1}=-0.1$ plot the band dispersion along the directions:

$$
\Gamma \rightarrow D \rightarrow X \rightarrow \Gamma
$$

where $\Gamma=(0,0), X=(\pi, 0)$ and $D=(\pi, \pi)$.
3. By using the same numerical values for the parameters of section 2) calculate the equation for the Fermi surface when the Fermi energy is placed at $E=-7.8$. Make a draw of the Fermi surface over the two-dimensional Brillouin zone.
4. What is the probability to find an electron on the upper lattice when this occupies the lowest available energy state at $\Gamma=(0,0)$?

Marking Scheme: A) 6 points, B) 9 points, C) 5 points, D) 5 points.

