Consider the three two-dimensional lattices, corresponding to three two-dimensional solids, depicted in the figure below:

1)

2)

3)

These are respectively the simple cubic lattice, the regular triangular lattice (the atoms are at the apices of equilateral triangles) and the 2 D rock-salt lattice.
A. For all the three solids identify the primitive unit cell (the smallest unit cell you can construct) and the associated translational vectors.
B. Since these are all periodic solids Bloch theorem applies and a general expression for the wave function can be derived. Write down explicitly the wave function for the three solids considering that:

- The simple cubic lattice is made of C and each atom is described by a p_{x} and a p_{y} orbital.
- The triangular lattice is made of H atoms described by a single 1 s orbital.
- The rock-salt lattice is made of H (dark circles) and Li (white circles). H is described by $1 s$ orbitals, while Li by $2 s$ ones.
C. Now consider the two-dimensional rock-salt lattice described by an orthogonal nearest neighbour tightbinding model where the on-site energy of H is ϵ_{H} that of Li is ϵ_{L} and the hopping parameter is $t<0$. Calculate the expression of the band structure.
D. Plot the band structure along the following directions:

$$
\left(k_{x}, k_{y}\right):(\pi / a, 0) \rightarrow(\pi / a, \pi / a) \rightarrow(0,0) .
$$

For the plot use the following values of the parameters $\epsilon_{\mathrm{H}}=0, \epsilon_{\mathrm{L}}=2, t=-2$.

Marking Scheme: A) 6 points, B) 6 points, C) 9 points, D) 4 points.

