4012 Condensed Matter Theory: Tutorial 3

1. The group velocity associated with a Bloch's state ψ_k is defined as:

$$v_k = rac{1}{m} \langle \psi_k | p | \psi_k
angle \quad ext{with} \quad p = rac{\hbar}{i} rac{\mathrm{d}}{\mathrm{d}x}$$

Demonstrate that the group velocity can also be written as:

$$v_k = \frac{1}{\hbar} \frac{\mathrm{d}E(k)}{\mathrm{d}k}$$

(Hint.: Write the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi_k(x) + V(x)\psi_k = E(k)\psi_k$$

for the Bloch's function $\psi_k(x) = e^{ikx}u(x)$ and differentiate with respect to k)

Consider a one orbital, orthogonal, nearest neighbors tight-binding model where the on-site energy is $\epsilon_0=3$ eV, the hopping integral $\gamma=-1$ eV and the lattice constant $a_0=1$ Å. In this case calculate the maximum group velocity.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

2. Consider a periodic solid and let $|\mathbf{R}\rangle$ denote an atomic orbital placed at the position \mathbf{R} . The generic molecular state for the solid is

$$|\psi_k
angle = \sum_{\mathbf{R}} c_k(\mathbf{R}) |\mathbf{R}
angle$$

where the sun runs over all the atomic sites.

- (a) Bloch's Theorem imposes a condition over the coefficients $c_k(\mathbf{R})$. By using such a condition write an expression for the energy associated to the state $|\psi_k\rangle$ (band equation), assuming $\langle \mathbf{R}' | \mathbf{R} \rangle = \delta_{\mathbf{R}'\mathbf{R}}$
- (b) Consider now the following triangular lattice of Carbon atoms, where each C atom sits at the corner of an equilateral triangle of side a_0 .

Using the Carbon p_z orbital as basis set, calculate the band structure equation for such a lattice, assuming only nearest neighbour interaction (the on-site energy is ϵ and the hopping integral γ).

(c) Consider now $\epsilon = 0$ and $\gamma = 1$, plot the bandstructure along the directions $\Gamma \to A \to B \to C$, where $\Gamma = (0,0)$, $A = (\pi/a_0, 0)$, - Typeset by FoilTEX -

4012 Condensed Matter Theory: Tutorial 3

$$B = (\pi/a_0, \pi/\sqrt{3}a_0)$$
 and $C = (0, \pi/\sqrt{3}a_0)$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –