PY4T01 Condensed Matter Theory: Lecture 9

Solids as giant molecules

Consider the following square lattice of atoms

As usual we expand the wave function on a localized atomic orbital basis set $|m n \alpha\rangle$ (supposed orthogonal)

$$
|\psi\rangle=\sum_{m n \alpha} \psi_{m n \alpha}|m n \alpha\rangle
$$

As usual consider the Schrödinger equation $H|\psi\rangle=E|\psi\rangle$, and project on $\langle j l \beta|$

- Typeset by FoilTEX -

Take only first nearest neighbors coupling (both along x and $y)$. This means $m=j \pm 1$ and $n=l \pm 1$:

$$
\sum_{\alpha}^{N_{\alpha}}\left[\langle j l \beta| H|j l \alpha\rangle \psi_{j l \alpha}+\right.
$$

$$
\begin{gathered}
\langle j l \beta| H|(j+1) l \alpha\rangle \psi_{j+1 l \alpha}+\langle j l \beta| H|(j-1) l \alpha\rangle \psi_{j-1 l \alpha}+ \\
\left.\langle j l \beta| H|j(l+1) \alpha\rangle \psi_{j l+1 \alpha}+\langle j l \beta| H|j(l-1) \alpha\rangle \psi_{j l-1 \alpha}\right]= \\
=E \sum_{\alpha}^{N_{\alpha}}\langle j l \beta \mid j l \alpha\rangle \psi_{j l \alpha}
\end{gathered}
$$

This looks rather complicated, however if we consider a square lattice of H atoms (one s state per atom), then $N_{\alpha}=1$ and we obtain

$$
\left(E-\epsilon_{0}\right) \psi_{j l}+\gamma_{x}\left(\psi_{j+1 l}+\psi_{j-1 l}\right)+\gamma_{y}\left(\psi_{j l+1}+\psi_{j l-1}\right)=0
$$

This is identical to the previous $1 D$ case in both the x and y directions!!! The solution, then must be of the kind:

$$
\psi_{j l}=A \mathrm{e}^{i k_{x} a_{x j} j} \mathrm{e}^{i k_{y} a_{y} l}
$$

By substituting this one obtains:

$$
\left(E-\epsilon_{0}\right)+\gamma_{x}\left(\mathrm{e}^{i k_{x} a_{x}}+\mathrm{e}^{-i k_{x} a_{x}}\right)+\gamma_{y}\left(\mathrm{e}^{i k_{y} a_{y}}+\mathrm{e}^{-i k_{y} a_{y}}\right)=0
$$

then

$$
E=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{x}\right)+2 \gamma_{y} \cos \left(k_{y} a_{y}\right)
$$

This is an example of band structure in 2D.

Note that:

- Now we have

$$
\begin{aligned}
& -\pi / a_{x}<k_{x}<\pi / a_{x} \\
& -\pi / a_{y}<k_{y}<\pi / a_{y}
\end{aligned}
$$

This means that the Brillouin Zone is "different" for k_{x} and k_{y}

- The Brillouin Zone for this 2D case is the 2D rectangular area given by

$$
\begin{aligned}
& -\pi / a_{x}<k_{x}<\pi / a_{x} \\
& -\pi / a_{y}<k_{y}<\pi / a_{y}
\end{aligned}
$$

- Again the Schrödinger equation is invariant for both (why?)

$$
\begin{aligned}
& k_{x} \rightarrow-k_{x} \\
& k_{y} \rightarrow-k_{y}
\end{aligned}
$$

We can reduce the Brillouin zone to (irreducible Brillouin Zone):

$$
\begin{aligned}
& 0<k_{x}<\pi / a_{x} \\
& 0<k_{y}<\pi / a_{y}
\end{aligned}
$$

- Since now the Brillouin Zone is a surface we can plot along different directions. For instance we can do:

$$
\left(k_{x}, k_{y}\right)=(0,0) \rightarrow\left(0, \pi / a_{y}\right) \rightarrow\left(\pi / a_{x}, \pi / a_{y}\right) \rightarrow(0,0)
$$

Example: $a_{y}=2 a_{x}=2 a_{0}$
The dispersion relation therefore is:

$$
E=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{0}\right)+2 \gamma_{y} \cos \left(2 k_{y} a_{0}\right)
$$

Let's plot the band along the direction:

$$
\begin{gathered}
\left(k_{x}, k_{y}\right)=(0,0) \rightarrow\left(0, \pi / a_{y}\right) \rightarrow\left(\pi / a_{x}, \pi / a_{y}\right) \rightarrow(0,0) \\
\left(k_{x}, k_{y}\right)=\Gamma \rightarrow Y \rightarrow S \rightarrow \Gamma
\end{gathered}
$$

$$
\begin{aligned}
& \epsilon_{0}=0 \\
& \gamma_{x}=-2 \\
& \gamma_{y}=-2
\end{aligned}
$$

- Typeset by FoilTEX -

Example: $a_{y}=a_{x}=a_{0}$
The dispersion relation therefore is:

$$
E=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{0}\right)+2 \gamma_{y} \cos \left(k_{y} a_{0}\right)
$$

Let's plot the band along the same direction:

$$
\left(k_{x}, k_{y}\right)=\Gamma \rightarrow Y \rightarrow S \rightarrow \Gamma
$$

But now $\gamma_{x}=-\gamma_{y}=-2, \epsilon_{0}=0$

Example: square H lattice

$$
\begin{gathered}
a_{y}=a_{x}=a_{0} \quad \gamma_{x}=\gamma_{y}=\gamma=-1 \quad \epsilon_{0}=0 \\
E_{k}=\epsilon_{0}+2 \gamma\left[\cos \left(k_{x} a_{0}\right)+\cos \left(k_{y} a_{0}\right)\right]
\end{gathered}
$$

Let's plot the band along the same direction:

$$
\left(k_{x}, k_{y}\right)=\Gamma \rightarrow Y \rightarrow S \rightarrow \Gamma
$$

Fermi Surface

In 2D (and 3D) the energy depends on both k_{x} and k_{y}.

Can we define a Fermi wave vector?

No!!! but we can define a Fermi Surface. This is the set of k_{x} and k_{y} such that

$$
E_{F}=E\left(k_{x}, k_{y}\right)
$$

Let us see some examples for the square H lattice. In this case the Fermi surface is defined as:

$$
E_{F}=\epsilon_{0}+2 \gamma\left[\cos \left(k_{x} a_{0}\right)+\cos \left(k_{y} a_{0}\right)\right]
$$

- Small band filling $\left(E_{F} \simeq \epsilon_{0}+4 \gamma\right)$. This means

$$
E_{F}=E\left(k_{x}, k_{y}\right) \simeq \epsilon_{0}+4 \gamma-\gamma a_{0}^{2}\left(k_{x}^{2}+k_{y}^{2}\right)
$$

The Fermi surface then looks like

Note also that in the free electron model in 2D one has

$$
E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)
$$

Therefore at the bottom of the band electrons behave almost freely with:

$$
\frac{\hbar^{2}}{2 m} \rightarrow-a_{0}^{2} \gamma
$$

- Band Center $\left(E_{F}=\epsilon_{0}\right)$. This means

$$
\cos \left(k_{x} a_{0}\right)=-\cos \left(k_{y} a_{0}\right)
$$

- Band nearly filled ($E_{F} \simeq \epsilon_{0}-4 \gamma$). This means

$$
\cos \left(k_{x} a_{0}\right)+\cos \left(k_{y} a_{0}\right) \simeq-2 \quad \rightarrow \quad k_{x} \sim \pi / a_{x} \quad k_{y} \sim \pi / a_{y}
$$

Expanding around π / a we find:

$$
E_{F}=E\left(k_{x}, k_{y}\right) \simeq \epsilon_{0}-4 \gamma+\gamma a_{0}^{2}\left(k_{x}^{2}+k_{y}^{2}\right)
$$

This is similar to the small band filling with

$$
-a_{0}^{2} \gamma \rightarrow+a_{0}^{2} \gamma
$$

Density of States

The definition given for one dimensional systems is still valid:

$$
d(E)=\sum_{\text {all } E_{k}} \delta\left(E-E_{k}\right)
$$

However this time E_{k} depends on both k_{x} and k_{y} :

$$
E_{k}=E\left(k_{x}, k_{y}\right)=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{x}\right)+2 \gamma_{y} \cos \left(k_{y} a_{y}\right)
$$

This can be calculated analytically (rather long) \rightarrow numerically

$$
d(E)=\sum_{k_{x}=-\pi / a_{x}}^{\pi / a_{x}} \sum_{k_{y}=-\pi / a_{y}}^{\pi / a_{y}} \delta\left(E-E\left(k_{x}, k_{y}\right)\right)
$$

For the square H lattice one obtains

Note that:

- The bandwidth is now 8γ
- The DOS diverges at the band center $E=\epsilon_{0}$

From 1D to 2D
How does the DOS change?

Consider again the general solution for our square lattice:

$$
\left|\psi_{\vec{k}}\right\rangle=\sum_{j l}^{N_{x} N_{y}} \psi_{j l}|j l\rangle=\sum_{j l}^{N_{x} N_{y}} A \mathrm{e}^{i k_{x} a_{x} j} \mathrm{e}^{i k_{y} a_{y} l}|j l\rangle
$$

In the limit $N_{y}=1$ we have the 1 D solution

$$
\left|\psi_{k}\right\rangle=\sum_{j}^{N_{x}} \mathrm{e}^{i k_{x} a_{x} j}|j\rangle
$$

Consider now $N_{y} \neq 1$ but also $N_{y} \neq \infty$. In this case the
boundary conditions for the wave function in the y direction are:

$$
\psi_{j 0}=\psi_{j N_{y}+1}=0
$$

This gives immediately (it is analogous to the case of the linear chain)

$$
\left|\psi_{\vec{k}}^{m}\right\rangle=\sum_{j l}^{N_{x} N_{y}} \psi_{j l}^{m}|j l\rangle
$$

with

$$
\psi_{j l}^{m}=\left(\frac{1}{N_{x}}\right)^{1 / 2}\left(\frac{2}{N_{y}+1}\right)^{1 / 2} \mathrm{e}^{i k_{x} a_{x} j} \sin \left(\frac{m \pi}{N_{y}+1} l\right)
$$

for $m=1, . ., N_{y}$
Therefore the wave function is the product of a standing wave (along y) times a traveling wave (along x). The energy is simply:

$$
E_{k}=\epsilon_{0}+2 \gamma\left[\cos \left(k_{x} a_{0}\right)+\cos \left(\frac{m \pi}{N_{y}+1}\right)\right]
$$

For every standing wave along y (transverse mode) we have a 1D band:

$$
E_{k}=\epsilon_{0}+\epsilon_{m}+2 \gamma \cos \left(k_{x} a_{x}\right)
$$

with

$$
\epsilon_{m}=2 \gamma \cos \left(\frac{m \pi}{N_{y}+1}\right)
$$

These m-dependent 1D bands are usually called mini-bands. This explains how the DOS changes from 1D to 2D.

