PY4T01 Condensed Matter Theory: Lecture 8

Density of States (DOS)

DOS is the number of states S per unit energy E

$$
D(E)=\frac{\mathrm{d} S}{\mathrm{~d} E}=\frac{\mathrm{d} S}{\mathrm{~d} k} \cdot\left|\frac{\mathrm{~d} k}{\mathrm{~d} E}\right|
$$

Example: $\underline{H \text { chain }}$
Remember that for the N atom ring

$$
E_{k}=\epsilon_{0}+2 \gamma \cos k a, \quad k=\frac{2 m \pi}{N a}
$$

then the number of states per unit k is

$$
\frac{\mathrm{d} S}{\mathrm{~d} k}=2 \cdot \frac{N a}{2 \pi}=\frac{N a}{\pi}
$$

and

$$
\frac{\mathrm{d} E_{k}}{\mathrm{~d} k}=2 a \gamma \sin k a
$$

Hence

$$
D(E)=\frac{N a}{\pi} \frac{1}{2 a \gamma \sin k a}=\frac{N}{\pi} \frac{1}{\left[4 \gamma^{2}-\left(E-\epsilon_{0}\right)^{2}\right]^{1 / 2}}
$$

Note that:

$$
\int_{-\infty}^{+\infty} D(E) \mathrm{d} E=N
$$

Since usually we take the limit $N \rightarrow \infty$ we define the DOS per atom $d(E)=D(E) / N$

$$
d(E)=\frac{1}{\pi} \frac{1}{\left[4 \gamma^{2}-\left(E-\epsilon_{0}\right)^{2}\right]^{1 / 2}}
$$

where now

$$
\int_{-\infty}^{+\infty} d(E) \mathrm{d} E=1
$$

usually a better representation

The spikes in the DOS (singularities) are called Van Hove singularities. They are a signature of 1D system.

Alternative definition of DOS

At the end of the day $D(E)$ is a way of counting the electronic states. The total number of states below the energy E_{α} is

$$
n_{\alpha}=\int_{-\infty}^{E_{\alpha}} D(E) \mathrm{d} E
$$

For each energy E_{k} I draw a square centered in E_{k}, with width δ and unit area

Alternatively one can replace the square with a Lorentzian centered in E_{k}

$$
f\left(E-E_{k}\right)=\frac{1}{\pi} \frac{\delta}{\delta^{2}+\left(E-E_{k}\right)^{2}}
$$

So the total DOS $D(E)$ is simply

$$
D(E)=\sum_{\text {all } E_{k}} f\left(E-E_{k}\right)
$$

Then we can take the limit $\lim _{\delta \rightarrow 0}$

$$
D(E) \rightarrow \sum_{\text {all } E_{k}} \delta\left(E-E_{k}\right)
$$

Local Density of States (LDOS)

Consider again the infinite Carbon chain

Our basis set is as usual $|j \alpha\rangle$ (j labels the atomic position, α the orbitals).

Consider a generic eigenstates $\left|\psi_{k}\right\rangle$. This is written as:

$$
\left|\psi_{k}\right\rangle=\sum_{j} \sum_{\alpha}|j \alpha\rangle\left\langle j \alpha \mid \psi_{k}\right\rangle=\sum_{j} \sum_{\alpha}\left\langle j \alpha \mid \psi_{k}\right\rangle|j \alpha\rangle
$$

As usual $\left|\left\langle j \alpha \mid \psi_{k}\right\rangle\right|^{2}$ is the probability to find an electron in the state $\left|\psi_{k}\right\rangle$ at the particular basis state $|j \alpha\rangle$

The idea is then to "weight" the total DOS $D(E)$ with the $\left|\left\langle j \alpha \mid \psi_{k}\right\rangle\right|^{2}$. We then define Local Density of States $d_{j \alpha}(E)$ as

$$
d_{j \alpha}(E)=\sum_{\text {all } E_{k}}\left|\left\langle j \alpha \mid \psi_{k}\right\rangle\right|^{2} f\left(E-E_{k}\right)
$$

Note that from the orthonormality of $|j \alpha\rangle$ we have the
important sum rule

$$
\sum_{j \alpha} d_{j \alpha}(E)=D(E)
$$

This tells us the DOS of a particular orbital sitting on a particular atom (it is not the total DOS per atom !!!).

In particular two quantities are usually interesting:

1. Atomic Density of States

$$
d_{j}(E)=\sum_{\alpha} d_{j \alpha}(E)=\sum_{\alpha} \sum_{\text {all } E_{k}}\left|\left\langle j \alpha \mid \psi_{k}\right\rangle\right|^{2} f\left(E-E_{k}\right)
$$

this is important for finite system (surfaces, dots ...)
2. Orbital resolved density of states

$$
d_{\alpha}(E)=\sum_{j} d_{j \alpha}(E)=\sum_{j} \sum_{\text {all } E_{k}}\left|\left\langle j \alpha \mid \psi_{k}\right\rangle\right|^{2} f\left(E-E_{k}\right)
$$

this is important for understanding how the electrons distribute over the basis orbitals

Fermi Energy

Suppose we have N available electronic states and M electrons. The Fermi Energy E_{F} is the highest occupied energy level, and it is obtained as:

$$
M=2 \int_{-\infty}^{E_{F}} D(E) \mathrm{d} E=2 N \int_{-\infty}^{E_{F}} d(E) \mathrm{d} E
$$

To get ride of the number N and M (they can go to ∞)

$$
\nu=M / 2 N=\int_{-\infty}^{E_{F}} d(E) \mathrm{d} E
$$

The k vector for which $E_{k}=E_{F}$ is called Fermi wave-vector.

The corresponding wave-length is called Fermi wave length

$$
\lambda_{F}=\frac{2 \pi}{k_{F}}
$$

Example: Infinite H chain
In this case I have 1 electronic state per atom and 1 electron per atom $(N=M)$. Then:

$$
\begin{gathered}
\nu=\frac{1}{2} \quad \text { half }- \text { filling } \\
1 / 2=\int_{-\infty}^{E_{F}} d(E) \mathrm{d} E \quad \longrightarrow \quad E_{F}=\epsilon_{0}
\end{gathered}
$$

So the Fermi wave vector is

$$
\epsilon_{0}=\epsilon_{0}+2 \gamma \cos (k a) \rightarrow k_{F}=\frac{\pi}{2 a}
$$

and the Fermi wave-length

$$
\lambda_{F}=4 a
$$

Density Matrix

Let us start from the definition

$$
\hat{\rho}=2 \sum_{\text {all } E_{k}}^{E_{F}}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

The charge density is

$$
\rho(x)=\langle x| \hat{\rho}|x\rangle=\sum_{\text {all } E_{k}}^{E_{F}}\left\langle x \mid \psi_{k}\right\rangle\left\langle\psi_{k} \mid x\right\rangle
$$

However the states $\left|\psi_{k}\right\rangle$ are

$$
\left|\psi_{k}\right\rangle=\frac{1}{N^{1 / 2}} \sum_{\alpha}^{N_{\alpha}} \sum_{j}^{N} A_{\alpha}^{k} \mathrm{e}^{i k a j}|j \alpha\rangle
$$

therefore

$$
\rho(x)=\frac{2}{N} \sum_{\text {all } E_{k}}^{E_{F}} \sum_{\alpha \beta}^{N_{\alpha}} \sum_{j l}^{N} A_{\alpha}^{k} A_{\beta}^{k} \mathrm{e}^{i k(j-l) a}\langle x \mid j \alpha\rangle\langle l \beta \mid x\rangle
$$

Now take the continuous limit for $\sum_{\text {all }}^{E_{F}}$

$$
\sum_{\text {all } E_{k}}^{E_{F}} \longrightarrow \frac{N a}{2 \pi} \int \mathrm{~d} k
$$

then

$$
\begin{gathered}
\rho(x)=\frac{a}{\pi} \sum_{\alpha \beta}^{N_{\alpha}} \sum_{j l}^{N} \int_{-k_{F}}^{k_{F}} \mathrm{~d} k A_{\alpha}^{k} A_{\beta}^{k} \mathrm{e}^{i k(j-l) a}\langle x \mid j \alpha\rangle\langle l \beta \mid x\rangle= \\
=\sum_{\alpha \beta}^{N_{\alpha}} \sum_{j l}^{N} \rho_{j \alpha l \beta}\langle x \mid j \alpha\rangle\langle l \beta \mid x\rangle
\end{gathered}
$$

where

$$
\rho_{j \alpha l \beta}=\frac{a}{\pi} \int_{-k_{F}}^{k_{F}} \mathrm{~d} k A_{\alpha}^{k} A_{\beta}^{k} \mathrm{e}^{i k(j-l) a}
$$

This is again the density matrix !!!

Example: The infinite H chain

In this case $N_{\alpha}=1 \longrightarrow A_{\alpha}^{k}=1$. Then

$$
\rho_{j l}=\frac{a}{\pi} \int_{-k_{F}}^{k_{F}} \mathrm{~d} k \mathrm{e}^{i k(j-l) a}
$$

$\underline{\text { Consider } j=l}$

$$
\rho_{l l}=\frac{a}{\pi} \int_{-k_{F}}^{k_{F}} \mathrm{~d} k=\frac{2 k_{F} a}{\pi}
$$

Note that:

- This is the occupation of atom l
- $\rho_{l l}$ is independent from l
- $\rho_{l l}=0$ at the band bottom $k_{F}=0$
- $\rho_{l l}=2$ at the band top $k_{F}=\pi / a$

Consider $j \neq l$

$$
\rho_{j l}=\frac{a}{\pi} \int_{-k_{F}}^{k_{F}} \mathrm{~d} k \mathrm{e}^{i k(j-l) a]}=\frac{2}{\pi} \frac{\sin \left[k_{F}(j-l) a\right.}{j-l}
$$

Note that:

- This is the bond order $j l$
- $\rho_{j l}$ depends on $|j-l|$
- $\rho_{j l}=0$ for both the band top and band bottom $\left(k_{F}=0\right.$, and $k_{F}=\pi / a$)
- $\rho_{j l}=\max$ at the band center $k_{F}=\pi / 2 a$

