PY4T01 Condensed Matter Theory: Lecture 7

Including more molecular orbitals: Tight-binding method
Consider an infinite chain of C atoms.
Atomic C:
$2 s^{2} 2 p^{2}$
In most solids C: $2 s^{1} 2 p^{3}$
It means that both the s and p states are relevant!!!

S

p_{x}

p_{z}

p_{y}

We can then expand our molecular state $|\psi\rangle$ as follows

$$
|\psi\rangle=\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} \psi_{j \alpha}|j \alpha\rangle
$$

where $|j \alpha\rangle$ is the molecular orbital α of the atom j

- Typeset by FoilTEX -

So the Schrödinger equation takes the form

$$
\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} \psi_{j \alpha} H|j \alpha\rangle=E \sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} \psi_{j \alpha}|j \alpha\rangle
$$

Again multiplying by $\langle l \beta|$

$$
\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} \psi_{j \alpha}\langle l \beta| H|j \alpha\rangle=E \sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} \psi_{j \alpha}\langle l \beta \mid j \alpha\rangle
$$

Since translational symmetry, we can apply Bloch's Theorem:

$$
\psi_{j \alpha}=A_{\alpha} \mathrm{e}^{i K j}
$$

So we obtain the secular equation:

$$
\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} A_{\alpha} \mathrm{e}^{i K j}\langle l \beta| H|j \alpha\rangle=E \sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} A_{\alpha} \mathrm{e}^{i K j}\langle l \beta \mid j \alpha\rangle
$$

Atomic orbital with $l>0$

The hydrogen atom wave-function are:

$$
\Psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

Note that:

- $R_{n l}(r)$ are real functions
- $Y_{l m}(\theta, \phi)$ may be complex

For instance for $n=2, l=1$ we have

$$
\begin{gathered}
Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1 \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta \mathrm{e}^{ \pm i \phi}
\end{gathered}
$$

It is usually convenient to work with a linear combination of the spherical harmonics:

$$
\Psi_{n 1 m}(r, \theta, \phi)=\left(\frac{3}{4 \pi}\right)^{1 / 2} R_{n 1}(r)\left\{\begin{array}{l}
x / r \\
y / r \\
z / r
\end{array}\right.
$$

Note that these orbitals have an odd parity (change sign under inversion)

Let us now calculate the matrix elements

Orthogonal basis set:

$$
\langle l \beta \mid j \alpha\rangle=\delta_{\alpha \beta} \delta_{l j}
$$

Nearest-neighbors interaction

$$
\langle l \beta| H|j \alpha\rangle=\left\{\begin{array}{lc}
\text { If } j=l & \left\{\begin{array}{ccc}
\epsilon_{\alpha} & \text { for } & \alpha=\beta \\
0 & \text { for } & \alpha \neq \beta
\end{array}\right. \\
\text { If } j=l \pm 1 & \left\{\begin{array}{ccc}
\gamma_{\alpha} & \text { for } & \alpha=\beta \\
\gamma_{\alpha \beta} & \text { for } & \alpha \neq \beta
\end{array}\right.
\end{array}\right.
$$

How many orbitals shall we use?

Then $N_{\alpha}=2$

$$
\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} A_{\alpha} \mathrm{e}^{i K(j-l)}\langle l \beta| H|j \alpha\rangle=E A_{\beta}
$$

Since our hypothesis on the matrix elements

$$
\begin{gathered}
E A_{\beta}=\sum_{\alpha}^{N_{\alpha}} A_{\alpha}[\langle l \beta| H|l \alpha\rangle+ \\
\left.+\mathrm{e}^{i K}\langle l \beta| H|(l+1) \alpha\rangle+\mathrm{e}^{-i K}\langle l \beta| H|(l-1) \alpha\rangle+\right]
\end{gathered}
$$

This can be written in a simpler matrix form

$$
\begin{gathered}
E\binom{A_{s}}{A_{p}}=\left[\left(\begin{array}{cc}
\epsilon_{s} & 0 \\
0 & \epsilon_{p}
\end{array}\right)+\right. \\
\left.+\left(\begin{array}{cc}
\gamma_{s s \sigma} & \gamma_{s p \sigma} \\
-\gamma_{s p \sigma} & \gamma_{p p \sigma}
\end{array}\right) \mathrm{e}^{i K}+\left(\begin{array}{cc}
\gamma_{s s \sigma} & -\gamma_{s p \sigma} \\
\gamma_{s p \sigma} & \gamma_{p p \sigma}
\end{array}\right) \mathrm{e}^{-i K}\right]\binom{A_{s}}{A_{p}}
\end{gathered}
$$

which reduces to
$\underset{\text { - Typeset by FoilTeX - }}{\left(\begin{array}{cc}\epsilon_{s}+2 \gamma_{s s \sigma} \cos K & 2 i \gamma_{s p \sigma} \sin K \\ -2 i \gamma_{s p \sigma} \sin K & \epsilon_{p}+2 \gamma_{p p \sigma} \cos K\end{array}\right)\binom{A_{s}}{A_{p}}=E\binom{A_{s}}{A_{p}}}$

Note that:

Simple solution: $\gamma_{s p \sigma}=0$
Then

$$
E=\left\{\begin{array}{l}
\epsilon_{s}+2 \gamma_{s s \sigma} \cos K=\epsilon_{s}(K) \\
\epsilon_{p}+2 \gamma_{p p \sigma} \cos K=\epsilon_{p}(K)
\end{array}\right.
$$

This is equivalent to two independent chains one only with s electrons and one only with p

General Case:

One must solve the eigenvalues equation:
$\left(\begin{array}{cc}\epsilon_{s}+2 \gamma_{s s \sigma} \cos K & 2 i \gamma_{s p \sigma} \sin K \\ -2 i \gamma_{s p \sigma} \sin K & \epsilon_{p}+2 \gamma_{p p \sigma} \cos K\end{array}\right)\binom{A_{s}}{A_{p}}=E\binom{A_{s}}{A_{p}}$
which has solutions
$E=\frac{1}{2}\left[\epsilon_{s}(K)+\epsilon_{p}(K) \pm \sqrt{\left[\epsilon_{s}(K)-\epsilon_{p}(K)\right]^{2}+16 \gamma_{s p \sigma} \sin ^{2} K}\right]$
with

$$
\begin{aligned}
\epsilon_{s}(K) & =\epsilon_{s}+2 \gamma_{s s \sigma} \cos K \\
\epsilon_{p}(K) & =\epsilon_{p}+2 \gamma_{p p \sigma} \cos K
\end{aligned}
$$

Note the correct limit for $\gamma_{s p \sigma} \rightarrow 0$

This work remarkably well !!!!

$\epsilon_{s}=-12.9 \mathrm{eV}, \epsilon_{p}=15.5 \mathrm{eV}, \gamma_{s s \sigma}=-1.3 \mathrm{eV}, \gamma_{p p \sigma}=5.2 \mathrm{eV}$, $\gamma_{s p \sigma}=0,5 \mathrm{eV}$

What about the remaining band?

We have to include the forgotten p_{y} and p_{z}
This gives us matrix elements such as:

$$
\left\langle l^{p_{y}}\right| H\left|(l-1)^{s}\right\rangle, \quad\left\langle l^{p_{y}}\right| H\left|(l-1)^{p_{x}}\right\rangle \ldots
$$

Let us see them in details. The new matrix elements are:

However only $p p \pi$ is not zero!!!

How to assign values to matrix elements?

- The zeros are mostly given by symmetry

The rule is: A matrix element $\left\langle l^{\beta}\right| H\left|(l-1)^{\alpha}\right\rangle$ is zero if the two atomic states at either end of the bond share the same angular momentum component about the bond axis

Consider a circuit of radius r around the bond axis. The length of the circuit is the $2 \pi r=\lambda n$, where λ is the wave length, and n the number of time the circuit pass through two lobes with opposite sign.
The linear momentum is $p=h / \lambda=n h /(2 \pi r)$
The angular momentum is $p r=n h / 2 \pi \rightarrow m=n$

- $s s \sigma:\langle s| H|s\rangle<0$

- $s p \sigma:\langle s| H\left|p_{x}\right\rangle>0$

- pp $:\left\langle p_{x}\right| H\left|p_{x}\right\rangle>0$

- $p p \pi:\left\langle p_{y}\right| H\left|p_{y}\right\rangle<0$

- The amplitude of the matrix elements depends on the degree of overlap.

From this one can conclude:

1. The first band is mainly s and dominated by $s s \sigma$
2. The last band is mainly p and dominated by $p p \sigma$
3. The one in between must have something to do with p and $p p \pi$

Extension of the model

Include also p_{y} and p_{z}. Now $N_{\alpha}=4$.

$$
\sum_{j}^{N} \sum_{\alpha}^{N_{\alpha}} A_{\alpha} \mathrm{e}^{i K(j-l)}\langle l \beta| H|j \alpha\rangle=E A_{\beta}
$$

Since our consideration on the overlap integrals we can write:

$$
H_{0} A+\mathrm{e}^{i K} H_{1} A+\mathrm{e}^{-i K} H_{1}^{\dagger} A=A E
$$

where now

$$
\begin{gathered}
A=\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right), \quad H_{0}=\left(\begin{array}{cccc}
\epsilon_{s} & 0 & 0 & 0 \\
0 & \epsilon_{p_{x}} & 0 & 0 \\
0 & 0 & \epsilon_{p_{y}} & 0 \\
0 & 0 & 0 & \epsilon_{p_{z}}
\end{array}\right) \\
H_{1}=\left(\begin{array}{cccc}
\gamma_{s s \sigma} & \gamma_{s p \sigma} & 0 & 0 \\
-\gamma_{s p \sigma} & \gamma_{p p \sigma} & 0 & 0 \\
0 & 0 & \gamma_{p p \pi} & 0 \\
0 & 0 & 0 & \gamma_{p p \pi}
\end{array}\right)
\end{gathered}
$$

The solutions of the secular equation are:
$E=\frac{1}{2}\left[\epsilon_{s}(K)+\epsilon_{p_{x}}(K)+\sqrt{\left[\epsilon_{s}(K)-\epsilon_{p_{x}}(K)\right]^{2}+16 \gamma_{s p \sigma} \sin ^{2} K}\right]$
$E=\frac{1}{2}\left[\epsilon_{s}(K)+\epsilon_{p_{x}}(K)-\sqrt{\left[\epsilon_{s}(K)-\epsilon_{p_{x}}(K)\right]^{2}+16 \gamma_{s p \sigma} \sin ^{2} K}\right]$

$$
\begin{aligned}
& E=\epsilon_{p_{y}}+2 \gamma_{p p \pi} \cos (K) \\
& E=\epsilon_{p_{z}}+2 \gamma_{p p \pi} \cos (K)
\end{aligned}
$$

- Typeset by FoilTEX -

Constructing the secular equation

- Draw the system introducing the relevant degrees of freedom and their coupling

- The secular equation has the form:

$$
\left[H_{0}+H_{1} \mathrm{e}^{i k a}+H_{1}^{\dagger} \mathrm{e}^{-i k a}\right] \Psi=E \Psi
$$

where $\left(p_{x}=x, p_{y}=y, p_{z}=z\right)$

$$
\begin{gathered}
\Psi=\left(\begin{array}{c}
A_{s} \\
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right), H_{0}=\left(\begin{array}{cccc}
\epsilon_{s} & 0 & 0 & 0 \\
0 & \epsilon_{x} & 0 & 0 \\
0 & 0 & \epsilon_{y} & 0 \\
0 & 0 & 0 & \epsilon_{z}
\end{array}\right) \\
H_{1}=\left(\begin{array}{cccc}
\gamma_{s s \sigma} & \gamma_{s p \sigma} & 0 & 0 \\
-\gamma_{s p \sigma} & \gamma_{p p \sigma} & 0 & 0 \\
0 & 0 & \gamma_{p p \pi} & 0 \\
0 & 0 & 0 & \gamma_{p p \pi}
\end{array}\right)
\end{gathered}
$$

