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The HN ring
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The Schrödinger equation is identical to that of the chain
except for the atoms |1〉 and |N〉.

Let’s use the trick of adding the imaginary atoms |0〉 and
|N + 1〉

The solution is again

ψj = AeiKj +Be−iKj

But now the boundary conditions are:

ψ0 = ψN and ψN+1 = ψ1
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which give

e±iKN = 1 → K =
2mπ
N

with m = 0, 1, 2, ..., (N − 1)

The corresponding normalized eigenstates are given by

ψm
j =

1√
N

ei2πm
N j

and the eigenvalues

Em = ε0 + 2γ cos
(

2πm
N

)
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Again take the limit N →∞

Em → EK = ε0 + 2γ cosK with 0 ≤ K < 2π
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A few important points:

• Why the molecular state |ψ〉 has 1) real coefficients for the
chain and 2) complex for the ring?

If you solve the time-dependent Schrödinger equation you
will find states of the form

|ψm(t)〉 =
N∑
j

1√
N

ei(Kj+Em/h̄t)|j〉

• Why the dispersion relation has the symmetry K → −K

• What is the basic difference between the ring and the chain?
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The Bloch’s Theorem

All we have done so far is based on the guess that

ψj = eiKj

This is the most general solution of our problem, as it is
demonstrated by the Bloch’s Theorem.

The Bloch’s Theorem

The eigenstates ψ(~r) of a one-particle Hamiltonian H(~r) =
H(~r + ~T ), where ~T is a generic vector, can be chosen to
be a plane-wave times a function with the same periodicity
of the Hamiltonian:

ψ(~r) = u(~r)ei~k·~r where u(~r + ~T ) = u(~r)
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What does it mean? ... is it what we have done?

Consider again the ring (topologically is equivalent to the
infinite chain).

All atoms in the ring are equivalent → All observables must
be invariant for translation along the ring.

Note:
This does not mean that the molecular state |ψ〉 is invariant!!

Consider for example the probability to find an electron at x

|ψ(x)|2 = |ψ(x+ n)|2

This means

ψ(x+ n) = eiφnψ(x)

Now express the wavefunctions ψ(x) = 〈x|ψ〉 in term of
atomic orbital 〈x|j〉

ψ(x) =
N∑
j

ψj〈x|j〉
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ψ(x+n) =
N∑
j

ψj〈x+n|j〉 =
N∑
j

ψj〈x|j−n〉 =
N∑
j

ψj+n〈x|j〉

our condition becomes

eiφn

N∑
j

ψj〈x|j〉 =
N∑
j

ψj+n〈x|j〉

therefore we need

ψj+n/ψj = eiφn

which gives

ψj = AeiKj

Then
ψ(x+ n) = eiKnψ(x)

It follows immediately that

ψ(x) = eiKxu(x) with u(x+ j) = u(x)

– Typeset by FoilTEX – 7



PY4T01 Condensed Matter Theory: Lecture 6 Stefano Sanvito

How do we use this result?

The dispersion can be easily written:

The molecular state is:

|ψ〉 =
1√
N

N∑
j

eiKj|j〉

Then the Schrödinger equation:

N∑
j

eiKjH|j〉 = E

N∑
j

eiKj|j〉

now multiply by 〈l|

N∑
j

eiKj〈l|H|j〉 = E

N∑
j

eiKj〈l|j〉

Since 〈l|j〉 = δlj

EK =
N∑
j

eiK(j−l)〈l|H|j〉
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Example:

Consider the linear chain where now also second and third
nearest neighbors hopping integrals are not zero (γ2, γ3):

ε0

γ1 γ1

γ2 γ2

γ3 γ3

EK =
N∑
j

eiK(j−l)〈l|H|j〉 =

= ε0+γ1(eiK +e−iK)+γ2(e2iK +e−2iK)+γ3(e3iK +e−3iK) =

= ε0 + 2γ1 cosK + 2γ2 cos 2K + 2γ3 cos 3K
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k-space

K labels all possible energies EK → it is the band “quantum
number”

For the ring
−π < K < π

Suppose the atom in the ring are separated by a distance a.
Then the phase factor of the Bloch’s Theorem is:

eimak

where now k is the band “quantum number” and

−π/a < k < π/a

We say that k spans the k-space.

The Brillouin zone is the region of k space in which all
eigenstates of the ring may be labeled uniquely.
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