PY4T01 Condensed Matter Theory: Lecture 6

The H_N ring

The Schrödinger equation is identical to that of the chain except for the atoms $|1\rangle$ and $|N\rangle$.

Let's use the trick of adding the imaginary atoms $|0\rangle$ and $|N+1\rangle$

The solution is again

$$\psi_j = A \mathrm{e}^{iKj} + B \mathrm{e}^{-iKj}$$

But now the boundary conditions are:

 $\psi_0 = \psi_N$ and $\psi_{N+1} = \psi_1$

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

which give

$$e^{\pm iKN} = 1 \rightarrow K = \frac{2m\pi}{N}$$
 with $m = 0, 1, 2, ..., (N-1)$

The corresponding normalized eigenstates are given by

$$\psi_j^m = \frac{1}{\sqrt{N}} \,\mathrm{e}^{i\frac{2\pi m}{N}j}$$

and the eigenvalues

$$E_m = \epsilon_0 + 2\gamma \cos\left(\frac{2\pi m}{N}\right)$$

– Typeset by $\overline{\text{FoilT}_E X}$ –

Again take the limit $N \to \infty$

$$E_m \to E_K = \epsilon_0 + 2\gamma \cos K \quad \text{with} \quad 0 \le K < 2\pi$$

A few important points:

• Why the molecular state $|\psi\rangle$ has 1) real coefficients for the chain and 2) complex for the ring?

If you solve the time-dependent Schrödinger equation you will find states of the form

$$|\psi_m(t)\rangle = \sum_{j}^{N} \frac{1}{\sqrt{N}} e^{i(Kj + E_m/\hbar t)} |j\rangle$$

- Why the dispersion relation has the symmetry $K \to -K$
- What is the basic difference between the ring and the chain?

The Bloch's Theorem

All we have done so far is based on the guess that

$$\psi_j = \mathrm{e}^{iKj}$$

This is the most general solution of our problem, as it is demonstrated by the Bloch's Theorem.

The Bloch's Theorem

The eigenstates $\psi(\vec{r})$ of a one-particle Hamiltonian $H(\vec{r}) = H(\vec{r} + \vec{T})$, where \vec{T} is a generic vector, can be chosen to be a plane-wave times a function with the same periodicity of the Hamiltonian:

$$\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$
 where $u(\vec{r}+\vec{T}) = u(\vec{r})$

What does it mean? ... is it what we have done?

Consider again the ring (topologically is equivalent to the infinite chain).

All atoms in the ring are equivalent \rightarrow All observables must be invariant for translation along the ring.

<u>Note:</u> This does not mean that the molecular state $|\psi\rangle$ is invariant!!

Consider for example the probability to find an electron at x

$$|\psi(x)|^2 = |\psi(x+n)|^2$$

This means

$$\psi(x+n) = \mathrm{e}^{i\phi_n}\psi(x)$$

Now express the wavefunctions $\psi(x)=\langle x|\psi\rangle$ in term of atomic orbital $\langle x|j\rangle$

$$\psi(x) = \sum_{j}^{N} \psi_{j} \langle x | j \rangle$$

– Typeset by FoilT $_{\!E\!X}$ –

Stefano Sanvito

$$\psi(x+n) = \sum_{j}^{N} \psi_{j} \langle x+n | j \rangle = \sum_{j}^{N} \psi_{j} \langle x | j-n \rangle = \sum_{j}^{N} \psi_{j+n} \langle x | j \rangle$$

our condition becomes

$$e^{i\phi_n} \sum_{j}^{N} \psi_j \langle x|j \rangle = \sum_{j}^{N} \psi_{j+n} \langle x|j \rangle$$

therefore we need

$$\psi_{j+n}/\psi_j = \mathrm{e}^{i\phi_n}$$

which gives

$$\psi_j = A \mathrm{e}^{iKj}$$

Then

$$\psi(x+n) = \mathrm{e}^{iKn}\psi(x)$$

It follows immediately that

$$\psi(x) = e^{iKx}u(x)$$
 with $u(x+j) = u(x)$

– Typeset by Foil $T_{\!E\!} \! X$ –

How do we use this result?

The dispersion can be easily written:

The molecular state is:

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{j}^{N} e^{iKj} |j\rangle$$

Then the Schrödinger equation:

$$\sum_{j}^{N} e^{iKj} H|j\rangle = E \sum_{j}^{N} e^{iKj}|j\rangle$$

now multiply by $\langle l|$

$$\sum_{j}^{N} e^{iKj} \langle l|H|j \rangle = E \sum_{j}^{N} e^{iKj} \langle l|j \rangle$$

Since $\langle l|j\rangle=\delta_{lj}$

$$E_K = \sum_{j}^{N} e^{iK(j-l)} \langle l|H|j\rangle$$

– Typeset by FoilT \overline{EX} –

Example:

Consider the linear chain where now also second and third nearest neighbors hopping integrals are not zero (γ_2 , γ_3):

$$E_{K} = \sum_{j}^{N} e^{iK(j-l)} \langle l|H|j\rangle =$$

= $\epsilon_{0} + \gamma_{1}(e^{iK} + e^{-iK}) + \gamma_{2}(e^{2iK} + e^{-2iK}) + \gamma_{3}(e^{3iK} + e^{-3iK}) =$
= $\epsilon_{0} + 2\gamma_{1}\cos K + 2\gamma_{2}\cos 2K + 2\gamma_{3}\cos 3K$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

k-space

K labels all possible energies $E_K \rightarrow {\rm it}$ is the band "quantum number"

For the ring

 $-\pi < K < \pi$

Suppose the atom in the ring are separated by a distance a. Then the phase factor of the Bloch's Theorem is:

 e^{imak}

where now k is the band "quantum number" and

 $-\pi/a < k < \pi/a$

We say that k spans the k-space.

The $Brillouin \ zone$ is the region of k space in which all eigenstates of the ring may be labeled uniquely.

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –