PY4T01 Condensed Matter Theory: Lecture 5

Going from molecules to solids: the \mathbf{H}_{N} linear molecule

Consider the H_{N} molecule.

Note that the H_{n} molecule does not exist in reality since H_{2} molecule is very stable. However there are several examples of molecular linear chains:

- Polyethylene: $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CH}_{2}+\mathrm{CH}_{2}+\ldots . . \mathrm{CH}_{2}=\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

- Polyacetylene: $\mathrm{C}_{2} \mathrm{H}_{4}+(\mathrm{CH})_{2}+(\mathrm{CH})_{2}+\ldots . . \mathrm{C}_{n} \mathrm{H}_{n+2}$

We follow the same philosophy of the H_{2} molecule:

1. Associate each H atom with an s state: j-th atom $\rightarrow|j\rangle$
2. Expand the molecular wave function $|\psi\rangle$ on such basis

$$
|\psi\rangle=\sum_{j}^{N} \psi_{j}|j\rangle
$$

3. Find $|\psi\rangle$ and its energy \mathbf{E} by solving the Schrödinger equation:

$$
H|\psi\rangle=E|\psi\rangle
$$

4. Expand the Schrödinger equation on our basis:

$$
\sum_{j}^{N} \psi_{j} H|j\rangle=E \sum_{i}^{N} \psi_{j}|j\rangle
$$

5. Reduce the Schrödinger equation to a matrix equation (multiply to the left by $\langle i|$)

$$
\sum_{j}^{N} \psi_{j}\langle i| H|j\rangle=E \sum_{j}^{N} \psi_{j}\langle i \mid j\rangle
$$

Now we have to decide the values of the matrix elements $\langle i| H|j\rangle$ and the overlaps $\langle i \mid j\rangle$

We assume:

$$
\langle i \mid j\rangle=\delta_{i j}
$$

and

$$
\langle i| H|j\rangle=\left\{\begin{array}{lll}
\epsilon_{0} & \text { if } \quad i=j \\
\gamma & \text { if } \quad j=i \pm 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

This is the tight-binding nearest neighbors approximation
Therefore the secular equation is:

$$
\left(\begin{array}{ccccc}
\epsilon_{0} & \gamma & 0 & \ldots & \ldots \\
\gamma & \epsilon_{0} & \gamma & \ldots & \ldots \\
0 & \gamma & \epsilon_{0} & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \gamma & \epsilon_{0}
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\ldots \\
\psi_{n}
\end{array}\right)=E\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\ldots \\
\psi_{n}
\end{array}\right)
$$

Finite hermitian matrix \rightarrow diagonalize it $\rightarrow \underline{\text { molecule spectrum }}$

Graphical way to construct the Hamiltonian matrix

1. Draw the atoms assigning positions

2. Assign on-site energies and hopping integrals

3. Construct the Hamiltonian: element $\mathrm{H}_{i j}=\mathrm{H}_{j i}^{*}$ is that between atoms i and j

Now solve the secular equation

$$
\begin{gathered}
\left(\epsilon_{0}-E\right) \psi_{1}+\gamma \psi_{2}=0 \\
\gamma \psi_{1}+\left(\epsilon_{0}-E\right) \psi_{2}+\gamma \psi_{3}=0 \\
\gamma \psi_{2}+\left(\epsilon_{0}-E\right) \psi_{3}+\gamma \psi_{4}=0 \\
\cdots \ldots \\
\gamma \psi_{N-2}+\left(\epsilon_{0}-E\right) \psi_{N-1}+\gamma \psi_{N}=0 \\
\gamma \psi_{N-1}+\left(\epsilon_{0}-E\right) \psi_{N}=0
\end{gathered}
$$

Except the first and the last all the equations have the form

$$
\gamma \psi_{j-1}+\left(\epsilon_{0}-E\right) \psi_{j}+\gamma \psi_{j+1}=0
$$

Let us try the solution

$$
\psi_{j}=\mathrm{e}^{i K j}
$$

We have:

- Typeset by FoilTEX -

$$
\left(\epsilon_{0}-E\right)+\gamma\left(\mathrm{e}^{i K}+\mathrm{e}^{-i K}\right)=0
$$

$$
E=\epsilon_{0}+2 \gamma \cos K
$$

If we now consider $K \rightarrow-K$ we still have the same solution. Then the most general solution is:

$$
\psi_{j}=A \mathrm{e}^{i K j}+B \mathrm{e}^{-i K j}
$$

We fix A and B by using $\left(\epsilon_{0}-E\right) \psi_{1}+\gamma \psi_{2}=0$

$$
A \mathrm{e}^{2 i K}+B \mathrm{e}^{-2 i K}=2 \cos K\left(A \mathrm{e}^{i K}+B \mathrm{e}^{-i K}\right)
$$

This is solved for $A=-B$ and therefore the solution becomes

$$
\psi_{j}=2 i A \sin K j=C \sin K j
$$

Finally we use the last equation $\gamma \psi_{N-1}+\left(\epsilon_{0}-E\right) \psi_{N}=0$

$$
\gamma \sin [(N-1) K]+\left(\epsilon_{0}-E\right) \sin [N K]=0
$$

After a few algebra this reduces to:

$$
\sin [(N+1) K]=0
$$

with solutions

$$
K=\frac{m \pi}{N+1} \quad \text { with } \quad m=1,2 \ldots . N
$$

Finally we have obtained the spectrum of the H_{N} molecule

$$
E_{m}=\epsilon_{0}+2 \gamma \cos \left(\frac{m \pi}{N+1}\right)
$$

and its eigenvalues $\left|\psi^{m}\right\rangle=\sum_{j}^{N} \psi_{j}^{m}|j\rangle$ where

$$
\psi_{j}^{m}=\left(\frac{2}{N+1}\right)^{1 / 2} \sin \left(\frac{m \pi}{N+1} j\right)
$$

Now analyze the solutions

$$
\underline{N=2}
$$

$$
E_{m}=\epsilon_{0}+2 \gamma \cos \left(\frac{m \pi}{3}\right) \rightarrow\left\{\begin{array}{l}
E_{1}=\epsilon_{0}+\gamma \\
E_{2}=\epsilon_{0}-\gamma
\end{array}\right.
$$

$$
\psi_{j}^{m}=\left(\frac{2}{3}\right)^{1 / 2} \sin \left(\frac{m \pi}{3} j\right) \rightarrow\left\{\begin{array}{l}
\psi_{j}^{1}=1 / \sqrt{2}\binom{1}{1} \\
\psi_{j}^{2}=1 / \sqrt{2}\binom{1}{-1}
\end{array}\right.
$$

This corresponds to the bonding ($m=1$) and antibonding $m=2$ states of the H_{2} molecule.
$N \rightarrow \infty$
This means that both N and $m \rightarrow \infty$ however:

$$
K=\frac{m \pi}{N+1}=\pi \frac{m}{N} \frac{1}{1+1 / N} \rightarrow \pi \frac{m}{N}
$$

SO

$$
E_{m} \rightarrow E_{K}=\epsilon_{0}+2 \gamma \cos K \quad \text { with } \quad 0<K<\pi
$$

This is called energy band or also dispersion relation. In this case:

$$
E_{m+1}-E_{m} \rightarrow 0 \quad \text { and } \quad \Delta=E_{\infty}-E_{0}=4|\gamma|
$$

$\underline{N \neq 2}$ and $N \neq \infty$

$\begin{array}{lllll}\mathrm{N}=1 & 2 & 3 & 4 & \infty\end{array}$

Remember that

$$
\left|\psi_{m}\right\rangle=\sum_{j} \psi_{j}^{m}|j\rangle=\sum_{j}\left(\frac{2}{N+1}\right)^{1 / 2} \sin \left(\frac{m \pi}{N+1} j\right)|j\rangle
$$

Alternative derivation of the dispersion relation

1. Introduce two imaginary atoms at the position 0 and $N+1$ and the relevant states $|0\rangle$ and $|N+1\rangle$

2. The benefit is that in our Schrödinger equation now we have:
$\left(\epsilon_{0}-E\right) \psi_{1}+\gamma \psi_{2}=0 \quad \rightarrow \quad \gamma \psi_{0}+\left(\epsilon_{0}-E\right) \psi_{1}+\gamma \psi_{2}=0$
$\gamma \psi_{N-1}+\left(\epsilon_{0}-E\right) \psi_{N}=0 \quad \rightarrow \quad \gamma \psi_{N-1}+\left(\epsilon_{0}-E\right) \psi_{N}+\gamma \psi_{N+1}=0$
with solution

$$
\psi_{j}=A \mathrm{e}^{i K j}+B \mathrm{e}^{-i K j}
$$

3. Of course we need to ask:

$$
\psi_{0}=\psi_{N+1}=0
$$

that gives

- Typeset by FoilTEX -

$$
\begin{gathered}
\psi_{0}=0 \quad \longrightarrow A=-B \\
\psi_{N+1}=0 \quad \longrightarrow \sin [(N+1) K]=0
\end{gathered}
$$

This derivation reduces the problem to a boundary conditions problem. It is analogous to the problem of free electron in a box.

