PY4T01 Condensed Matter Theory: Lecture 4

Bond Energy

Consider again the eigenvalues equation for the heteronuclear molecule

$$
\left(\begin{array}{cc}
\epsilon_{A} & \gamma \\
\gamma & \epsilon_{B}
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=E\binom{\psi_{A}}{\psi_{B}}
$$

The solutions are the bonding and antibonding states

$$
\binom{\psi_{A}^{\text {bond }}}{\psi_{B}^{\text {bond }}} \text { and } \quad\binom{\psi_{A}^{\text {anti }}}{\psi_{B}^{\text {anti }}}
$$

Consider for the moment only the bonding state

$$
\left(\begin{array}{cc}
\epsilon_{A} & \gamma \\
\gamma & \epsilon_{B}
\end{array}\right)\binom{\psi_{A}^{\text {bond }}}{\psi_{B}^{\text {bond }}}=E_{\text {bond }}\binom{\psi_{A}^{\text {bond }}}{\psi_{B}^{\text {bond }}}
$$

and multiply to the left by $\left(\psi_{A}^{\text {bond }}, \psi_{B}^{\text {bond }}\right)$

$$
E_{\mathrm{bond}}=\epsilon_{A}\left(\psi_{A}^{\mathrm{bond}}\right)^{2}+\epsilon_{B}\left(\psi_{B}^{\text {bond }}\right)^{2}+2 \gamma \psi_{A}^{\text {bond }} \psi_{B}^{\text {bond }}
$$

- $\left(\psi_{A}^{\text {bond }}\right)^{2}$ is the probability to find an electron on the atom $\overline{\mathrm{A}}$ in the bonding state.
$\epsilon_{A}\left(\psi_{A}^{\text {bond }}\right)^{2}$ is the energy contribution coming from the time spent by the electron on the atom A in the bonding state.
- $\Theta_{\mathrm{AB}}^{\mathrm{bond}}=\psi_{A}^{\text {bond }} \psi_{B}^{\text {bond }}$ is the interference term. It is called partial bond order of the $A B$ bond.
- $\frac{2 \gamma \psi_{A}^{\text {bond }}}{\text { b }} \psi_{B}^{\text {bond }}$ is partial bond energy of the AB bond.

The total bond order is the sum of the partial bond order over all the occupied states.

$$
\Theta_{\mathrm{AB}}^{\text {total }}=\sum_{j}^{\text {occupied }} \Theta_{\mathrm{AB}}^{j}
$$

The total bond energy is the sum of the partial bond energy over all the occupied states.

$$
E^{\text {total }}=\sum_{j}^{\text {occupied }} 2 \gamma \Theta_{\mathrm{AB}}^{j}
$$

The total bond energy is a measure of the stability of a specific bond

Example:

Consider the H_{2} molecule. Then:

$$
\Psi_{\text {bond }}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad \Psi_{\text {anti }}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Therefore:

$$
\begin{aligned}
& E_{\text {bond }}=1 / 2 \epsilon_{0}+1 / 2 \epsilon_{0}+\gamma \quad \longrightarrow \quad \Theta^{\text {bond }}=1 / 2 \\
& E_{\text {anti }}=1 / 2 \epsilon_{0}+1 / 2 \epsilon_{0}-\gamma \quad \longrightarrow \quad \Theta^{\text {anti }}=-1 / 2
\end{aligned}
$$

Consider how the bond order and the bond energy change with electron number

The Density Matrix

Consider the $A B$ dimer in its ground state. The charge density is:

$$
\rho(\vec{r})=2\left\langle\vec{r} \mid \psi_{\text {bond }}\right\rangle\left\langle\psi_{\text {bond }} \mid \vec{r}\right\rangle
$$

We define "charge density operator"

$$
\hat{\rho}=\sum_{j}^{\text {occupied }}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

For instance in the case we have only two electrons

$$
\hat{\rho}=2\left|\psi_{\text {bond }}\right\rangle\left\langle\psi_{\text {bond }}\right|
$$

Now write the representation of $\hat{\rho}$ on our basis function $|A\rangle,|B\rangle$

$$
\rho=\left(\begin{array}{cc}
\rho_{A A} & \rho_{A B} \\
\rho_{B A} & \rho_{B B}
\end{array}\right)=\left(\begin{array}{cc}
\psi_{A}^{*} \psi_{A} & \psi_{A}^{*} \psi_{B} \\
\psi_{B}^{*} \psi_{A} & \psi_{B}^{*} \psi_{B}
\end{array}\right)_{\text {bond }}
$$

where

$$
\begin{aligned}
& \rho_{A A}=\langle A| \hat{\rho}|A\rangle \\
& \rho_{B B}=\langle B| \hat{\rho}|B\rangle \\
& \rho_{A B}=\langle A| \hat{\rho}|B\rangle=2\left\langle B \mid \psi_{\text {bond }}\right\rangle\left\langle\psi_{\text {bond }}\right\rangle\left\langle\psi_{\text {bond }} \mid B\right\rangle=2\left\langle A \mid \psi_{\text {bond }}\right\rangle\left\langle\psi_{\text {bond }} \mid B\right\rangle=2 \psi_{A}^{*} \psi_{B} \\
& \psi_{A}^{*} \psi_{B}
\end{aligned}
$$

Note:

- $\hat{\rho}$ is hermitian, so all its representations are hermitian matrices
- Diagonal terms: probability to find an electron in the specific state A or B
- Off-Diagonal terms: Bond Order
- The expectation value L of a generic operator \hat{L} can be calculated simple as:

$$
L=\operatorname{Tr}[\hat{L} \hat{\rho}]
$$

Demonstration of this last point:

$$
\begin{gathered}
L=\langle\psi| \hat{L}|\psi\rangle=\sum_{i, j}\langle\psi \mid i\rangle\langle i| \hat{L}|j\rangle\langle j \mid \psi\rangle= \\
\sum_{i, j}\langle i| \hat{L}|j\rangle\langle j \mid \psi\rangle\langle\psi \mid i\rangle=\sum_{i, j} L_{i j} \rho_{j i}=\operatorname{Tr}[L \rho]
\end{gathered}
$$

The density matrix contains ALL the information about the ground state electronic structure of the system !!!

