PY4T01 Condensed Matter Theory: Lecture 3

The H_{2} molecule

$$
\begin{aligned}
E_{\text {bond }} & =\epsilon_{0}+\gamma & \left|\psi_{\text {bond }}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \\
E_{\text {anti }}=\epsilon_{0}-\gamma & & \left|\psi_{\text {anti }}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle)
\end{aligned}
$$

How does the charge distribute in space?
Antibonding State: no charge between the two atoms

Bonding State: charge between the two H atoms

In fact the charge density associated with two electrons in the bonding state is:

$$
\begin{gathered}
\rho=2\left\langle\psi_{\text {bond }} \mid \psi_{\text {bond }}\right\rangle \\
\rho(\vec{r})=2\left\langle\psi_{\text {bond }} \mid \vec{r}\right\rangle\left\langle\vec{r} \mid \psi_{\text {bond }}\right\rangle=2\left|\psi(\vec{r})_{\text {bond }}\right|^{2}= \\
=\rho_{1}(\vec{r})+\rho_{2}(\vec{r})+\rho_{\mathrm{B}}(\vec{r})
\end{gathered}
$$

with

$$
\rho_{\mathrm{B}}(\vec{r})=2 \psi_{1}(\vec{r}) \psi_{2}(\vec{r})
$$

Time dependent Schrödinger equation

$$
i \hbar \frac{\mathrm{~d}|\psi\rangle}{\mathrm{d} t}=H|\psi\rangle
$$

Again we expand the wave function on the atomic wave functions

$$
|\psi(t)\rangle=\psi_{1}(t)|1\rangle+\psi_{2}(t)|2\rangle
$$

We obtain the equations of motion for the coefficients $\psi_{i}(t)$

$$
\left\{\begin{array}{l}
i \hbar \frac{\mathrm{~d} \psi_{1}}{\mathrm{~d} t}=\epsilon_{0} \psi_{1}+\gamma \psi_{2} \\
i \hbar \frac{\mathrm{~d} \psi_{2}}{\mathrm{~d} t}=\gamma \psi_{1}+\epsilon_{0} \psi_{2}
\end{array}\right.
$$

The general solution is

$$
\begin{gathered}
\psi_{1}(t)=A_{1} \mathrm{e}^{-i \omega t} \quad \text { and } \quad \psi_{2}(t)=A_{2} \mathrm{e}^{-i \omega t} \\
\left\{\begin{array}{l}
\hbar \omega A_{1}=\epsilon_{0} A_{1}+\gamma A_{2} \\
\hbar \omega A_{2}=\epsilon_{0} A_{2}+\gamma A_{1}
\end{array}\right.
\end{gathered}
$$

$$
\left(\begin{array}{cc}
\epsilon_{0} & \gamma \\
\gamma & \epsilon_{0}
\end{array}\right)\binom{A_{1}}{A_{2}}=\hbar \omega\binom{A_{1}}{A_{2}}
$$

with solutions

$$
\begin{aligned}
\omega_{\mathrm{bond}} & =\frac{\epsilon_{0}+\gamma}{\hbar} \\
\omega_{\mathrm{anti}} & =\frac{\epsilon_{0}-\gamma}{\hbar}
\end{aligned}
$$

Therefore the coefficients are:

$$
\begin{aligned}
& \psi_{1}(t)=a \mathrm{e}^{-i \frac{\epsilon_{0}+\gamma}{\hbar} t}+b \mathrm{e}^{-i \frac{\epsilon_{0}-\gamma}{\hbar} t} \\
& \psi_{2}(t)=a \mathrm{e}^{-i \frac{\epsilon_{0}+\gamma}{\hbar} t}-b \mathrm{e}^{-i \frac{\epsilon_{0}-\gamma}{\hbar} t}
\end{aligned}
$$

a and b must be fix from initial conditions. Suppose at $t=0$ $\psi_{1}(0)=1$ and $\psi_{2}(0)=0$. Then $a=b=1 / 2$

$$
\begin{aligned}
& \psi_{1}(t)=\mathrm{e}^{-i \epsilon_{0} / \hbar t} \cos (\gamma t / \hbar) \\
& \psi_{2}(t)=\mathrm{e}^{-i \epsilon_{0} / \hbar t} \sin (\gamma t / \hbar)
\end{aligned}
$$

The probability that the molecule is in the state $|1\rangle$ (and $|2\rangle$) is

$$
\begin{aligned}
& \left|\psi_{1}(t)\right|^{2}=\cos ^{2}(\gamma t / \hbar) \\
& \left|\psi_{2}(t)\right|^{2}=\sin ^{2}(\gamma t / \hbar)
\end{aligned}
$$

An electron in the molecule is vibrating back and forth between the two atoms with period

$$
T=\frac{h}{2|\gamma|}
$$

- The ionization energy of H is 13.6 eV . Why do the electrons go back and forth so easily?
- The hopping probability is $2 \gamma / h$
- Remember that

$$
\gamma=-\langle 1| \frac{e^{2}}{\left|\vec{r}-\vec{R}_{B}\right|}|2\rangle
$$

If the separation between H increases $\gamma \rightarrow 0$. No hopping probability \rightarrow NO BOND

The heteronuclear diatomic molecule

Now assume atom A and B are different (say H and Li)

"Friendly" basis function \rightarrow Ground state of isolated atoms.

$$
\begin{array}{cccc}
\epsilon_{2 s}^{\mathrm{A}} & \text { for } \mathrm{Li} & (-5.6 \mathrm{eV}) & \longrightarrow|A\rangle \\
\epsilon_{1 s}^{\mathrm{B}} & \text { for } \mathrm{H} & (-13.6 \mathrm{eV}) & \longrightarrow|B\rangle
\end{array}
$$

where as before:

$$
\begin{aligned}
H_{A}|A\rangle & =\epsilon_{2 s}^{\mathrm{A}}|A\rangle \\
H_{B}|B\rangle & =\epsilon_{1 s}^{\mathrm{B}}|B\rangle
\end{aligned}
$$

Then the dimer wavefunction can be written as:

$$
|\psi\rangle=\psi_{A}|A\rangle+\psi_{B}|B\rangle
$$

Following the same procedure than before we end up with the secular equation

$$
\left(\begin{array}{cc}
\epsilon_{A} & \gamma \\
\gamma & \epsilon_{B}
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=E\binom{\psi_{A}}{\psi_{B}}
$$

where now

$$
\begin{aligned}
\epsilon_{A} & =\epsilon_{2 s}^{\mathrm{A}}+\int \rho_{A}(\vec{r}) V_{B}(\vec{r}) \mathrm{d} \vec{r} \\
\epsilon_{B} & =\epsilon_{1 s}^{\mathrm{B}}+\int \rho_{B}(\vec{r}) V_{A}(\vec{r}) \mathrm{d} \vec{r} \\
\gamma & =\langle A| H|B\rangle=\langle A| V_{B}|B\rangle
\end{aligned}
$$

Note
In the case of the H atom

$$
V_{B}(\vec{r})=-\frac{e^{2}}{\left|\vec{r}-\vec{R}_{B}\right|}
$$

Note:

In our example $A=L i 2 s$ state.
What about the two electrons in the Li 1s state?

$$
H=-\sum_{j}^{3} \frac{\hbar^{2} \nabla_{j}^{2}}{2 m}-\frac{1}{2} \sum_{i}^{3} \frac{3 e^{2}}{\left|\vec{r}_{i}-\vec{R}\right|}+\frac{1}{2} \sum_{i \neq j}^{3} \frac{e^{2}}{r_{i j}}
$$

Since the 1s state has a much lower energy and it is entirely occupied, we can neglect it and approximate:

$$
H=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{A}(\vec{r})
$$

V_{A} is the effective potential of the 2 s electron (optical electron) due to the 1 s states
Electrons important for bonding \rightarrow VALENCE ELECTRONS
Electrons not important for bonding \rightarrow CORE ELECTRONS

Now solve the secular equation:

$$
\begin{gathered}
E_{\mathrm{bond}}=\bar{E}-\left(\Delta^{2}+\gamma^{2}\right)^{1 / 2} \\
E_{\mathrm{anti}}=\bar{E}+\left(\Delta^{2}+\gamma^{2}\right)^{1 / 2}
\end{gathered}
$$

where we have defined

$$
\begin{aligned}
\bar{E} & =\frac{\epsilon_{A}+\epsilon_{B}}{2} \\
\Delta & =\frac{\epsilon_{A}-\epsilon_{B}}{2}
\end{aligned}
$$

The energy difference between bonding and antibonding states is

$$
E_{\mathrm{bond}}-E_{\mathrm{anti}}=2\left(\Delta^{2}+\gamma^{2}\right)^{1 / 2}
$$

Note that:

- If $\mathrm{A}=\mathrm{B}$ then $\Delta=0 \longrightarrow$ results for homonuclear diatomic molecule
- If $\gamma=0 \longrightarrow E_{\text {bond }}=\epsilon_{B}$ and $E_{\text {anti }}=\epsilon_{A}\left(\right.$ remember $\left.\epsilon_{B}<\epsilon_{A}\right)$

We have to calculate ψ_{A} and ψ_{B}.
For the bonding state we have

$$
\left\{\begin{array}{l}
\psi_{A}^{\text {bond }}=\frac{1}{\sqrt{2}}\left[1-\frac{x}{\sqrt{1+x^{2}}}\right]^{1 / 2} \\
\psi_{B}^{\text {bond }}=\frac{1}{\sqrt{2}}\left[1+\frac{x}{\sqrt{1+x^{2}}}\right]^{1 / 2}
\end{array}\right.
$$

and for the antibonding

$$
\left\{\begin{array}{l}
\psi_{A}^{\mathrm{anti}}=\frac{-1}{\sqrt{2}}\left[1+\frac{x}{\sqrt{1+x^{2}}}\right]^{1 / 2} \\
\psi_{B}^{\mathrm{anti}}=\frac{1}{\sqrt{2}}\left[1-\frac{x}{\sqrt{1+x^{2}}}\right]^{1 / 2}
\end{array}\right.
$$

where

$$
x=\Delta / \gamma
$$

ANTIBONDING

Consider first the ratio $\psi_{A}^{2} / \psi_{B}^{2}$

$$
\begin{aligned}
\frac{\psi_{A}^{2}}{\psi_{B}^{2}} & =\frac{1}{1+2 x^{2}+2 x \sqrt{\left(1+x^{2}\right)}} \quad \text { Bonding State } \\
\frac{\psi_{A}^{2}}{\psi_{B}^{2}} & =\frac{1}{1+2 x^{2}-2 x \sqrt{\left(1+x^{2}\right)}} \quad \text { Antibonding State } \\
&
\end{aligned}
$$

Now look at the charge density:

$$
\rho_{\mathrm{bond}}(\vec{r})=\left(1-\alpha_{p}\right) \rho_{A}(\vec{r})+\left(1+\alpha_{p}\right) \rho_{B}(\vec{r})+\alpha_{c} \rho_{A B}(\vec{r})
$$

with

$$
\begin{aligned}
\alpha_{p} & =\frac{x}{\sqrt{1+x^{2}}} \\
\alpha_{c} & =\frac{1}{\sqrt{1+x^{2}}}
\end{aligned} \quad \text { Bond Polarity }
$$

Note that:

- $\alpha_{p}^{2}+\alpha_{c}^{2}=1$
- If $\mathrm{A}=\mathrm{B}$, the $x=0 \longrightarrow \alpha_{p}=0, \alpha_{c}=1$, Pure covalent bond
- If $\gamma=0$, the $x \rightarrow \infty$ then $\alpha_{p}=1, \alpha_{c}=0$, Pure ionic bond

Electronegativity

Electronegativity: power of an atom to attract electron to itself from neighboring atoms in its environment

How to establish an electronegative scale?
On-site energy is not ideal. Remember in fact that:

$$
\epsilon_{A}=\epsilon_{\mathrm{atomic}}^{\mathrm{A}}+\int \rho_{A}(\vec{r}) V_{B}(\vec{r}) \mathrm{d} \vec{r}
$$

Pauling electronegativity scale
H
(2.2)

Li
Be
B C

F
(0.98)
(1.57)
(2.04)
(2.55)
(3.04)
(3.41)
(3.98)

Na

AI
Si
P
S
Cl
(0.93)
(1.31)
(1.61) (1.90)
(2.19) (2.58)
(3.16)

K
Ca
(0.82)
(1.00)

Rb
(0.82)
Ge
As
Se Br
(2.01)
(2.18)
(2.55)
(2.96)

Mülliken electronegativity

$$
\chi_{A}=\frac{1}{2}\left(I P_{A}+E A_{A}\right)
$$

with $I P_{A}$ ionization potential atom $\mathrm{A}, E A_{A}$ electron affinity atom A.

$A-B$ is covalent if:

$$
\text { Energy } A^{+} B^{-}=\text {Energy } A^{-} B^{+}
$$

or

$$
\begin{aligned}
& I P_{A}-E A_{B}=I P_{B}-E A_{A} \\
& I P_{A}+E A_{A}=I P_{B}+E A_{B}
\end{aligned}
$$

