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Mean field approximation

Can we solve the many-particle problem?

HU = ε0
∑
µσ

n̂µσ + γ
∑

σ

(c†1σc2σ + c†2σc1σ) + U
∑

µ

n̂µ↑n̂µ↓

Let us re-write the Hubbard term

U
∑

µ

n̂µ↑n̂µ↓ = U
∑

µ

[nµ↑ − (nµ↑ − n̂µ↑)] [nµ↓ − (nµ↓ − n̂µ↓)] =

= U
∑

µ

[nµ↑ − δn̂µ↑] [nµ↓ − δn̂µ↓]

with nµσ = 〈n̂µσ〉 and we have introduced the fluctuation
operator δn̂νσ

By expanding we obtain

U
∑

µ

n̂µ↑n̂µ↓ = U
∑

µ

[nµ↑nµ↓ − nµ↑δn̂µ↓ − nµ↓δn̂µ↑ + δn̂µ↓δn̂µ↑]
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The mean field approximation consists in neglecting the
fluctuation-fluctuation term

U
∑

µ

n̂µ↑n̂µ↓ ≈ U
∑

µ

[nµ↑nµ↓ − nµ↑δn̂µ↓ − nµ↓δn̂µ↑] =

U
∑

µ

[nµ↑n̂µ↓ + nµ↓n̂µ↑ − nµ↑nµ↓]

This is now a single-particle Hamiltonian!

HU =
∑

µ[n̂µ↑(ε0 + Unµ↓) + n̂µ↓(ε0 + Unµ↑)]+

+γ
∑

σ(c†1σc2σ + c†2σc1σ)+

−U
∑

µ nµ↑nµ↓

where the on-site energy depends on the spin-occupation nµσ

In general one needs a self-consistent solution, i.e. we have
to determine nµσ. For the case of H2 this is however simple.
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How does the new on-site (mean field) term work? Consider
the case of one atom only.

H0 = n̂↑(ε0 + Un↓) + n̂↓(ε0 + Un↑) = n̂↑v↓ + n̂↓v↑

0 1 2n

ε0 ε0

ε0+U ε0+U

v σ

The potential for spin ↑ depends on the population of spin
↓ and viceversa.
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Let us revise the N=2 case.

Since now there is no electron-electron operator (no operator
in c†c†cc) we can simply use

|ψ〉 = ψ1| ↑, 0〉+ ψ2|0, ↑〉
or

|ψ〉 = ψ1| ↓, 0〉+ ψ2|0, ↓〉

Take for instance spin ↑. The Hamiltonian matrix then is(
ε0 + Un1↓ γ

γ ε0 + Un2↓

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)

This is formally the Hamiltonian equation for the
heteronuclear molecule. However because H2 is homonuclear
then one has n1σ = n2σ = 1/2 nσ (this is because of inversion
symmetry). The the solution is:

E↑
bond = ε0 +

U

2
n↓ + γ, |ψbond〉 =

1√
2

[| ↑, 0〉+ |0, ↑〉]

E↑
anti = ε0 +

U

2
n↓ − γ, |ψanti〉 =

1√
2

[| ↑, 0〉 − |0, ↑〉]
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Now repeat the same for ↓

E↓
bond = ε0 +

U

2
n↑ + γ, |ψbond〉 =

1√
2

[| ↓, 0〉+ |0, ↓〉]

E↓
anti = ε0 +

U

2
n↑ − γ, |ψanti〉 =

1√
2

[| ↓, 0〉 − |0, ↓〉]

Finally calculate the ground state energy for two electrons
(↑ and ↓). Note that n↑ = n↓ = 1, then

E↑
bond = E↓

bond = ε0 +
U

2
+ γ

E↑
anti = E↓

anti = ε0 +
U

2
− γ

The total energy finally is

Etotal = E↑
bond + E↓

bond − U
∑

µ

nµ↑nµ↓

Etotal = 2(ε0 + γ) + U/2
to compare with that of the fully interacting case

Etotal = 2ε0 +
U

2
−
√
U2 + 16γ2

2
≈ 2(ε0 − |γ|) + U/2− |γ|U2

16γ2

– Typeset by FoilTEX – 5



PY4T01 Condensed Matter Theory: Lecture 16 Stefano Sanvito

If nµσ are not know a priori then the calculation need to be
self-consistent:
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Functional theory

Is there a better and more precise way of finding the ground
state energy? Yes, one can define the problem via a variational
principle

EGS = min|Ψ〉 〈Ψ|HU|Ψ〉, 〈Ψ|
∑
µσ

n̂µσ|Ψ〉 = N

One has to search for the |Ψ〉 that minimizes the functional →
still an impossible task (the Hilbert space for |Ψ〉 is enormous).

What if the many-particle wave-function is itself a functional
of some simpler quantity? For instance

|Ψ〉 = |Ψ[{nµσ}]〉

then
EGS = min{nµσ} 〈Ψ[{nµσ}]|HU|Ψ[{nµσ}]〉

One now has to find the set of occupation numbers {nµσ}
which minimize the energy.
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Example (somehow trivial but useful):

Consider the non-interacting U = 0 infinite chain of H atoms
and an equal number of ↑ and ↓ electrons so that the filling
factors are

ν↑ = ν↓ = n

The total energy (per site) is uniquely defined by n (average
spin occupation per site). In fact:

n =
∫ EF

−∞
d(E)dE

eGS =
∫ EF

−∞
d(E)E dE

One can show that

eGS = 2nε0 +
4γ
π

sin (nπ)
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The crucial point is that this is possible for the interacting
case as well. The statement is:

1. The central quantity of the theory is the site occupation

nνσ = 〈Ψ|n̂νσ|Ψ〉

2. Theorem I: The ground state energy and any other ground
state observables are unique function of the site occupation.

E[{nνσ}] = F [{nνσ}] +
∑
νσ

ενnνσ

3. Theorem II: The site occupation that minimizes the total
energy functional is the exact ground state site occupation.

E[{nνσ}GS] = EGS

[O. Gunnarsson and K. Schonhammer, Phys. Rev. Lett. 56,
1968 (1986); K. Schonhammer, O. Gunnarsson and R.M. Noack,
Phys. Rev. B. 52, 2504 (1995)]
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Ab-initio Theories

Lattice DFT is just a special case of a much more general
method called ab initio density functional theory.

It is based on the famous Hohenberg-Kohn Theorem
[P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)]
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which says:

The ground state energy EN of a system of N electrons
(interacting!!) is a unique, universal functional of the single
particle charge density ρ(~r)

EN [ρ(~r)] = T [ρ(~r)] + EC[ρ(~r)] + Eext[ρ(~r)] + EXC[ρ(~r)]

Moreover the ground state charge density ρGS(~r) is such
that:

EN [ρGS] < EN [ρ]

Therefore we have:

• A universal definition of the system energy

• A variational principle

How do we do calculations in practice?

Kohn and Sham demonstrated that the search for the ground
state energy and charge density can be mapped onto single-
particle problem.

HKS[ρ(~r)]ψn = Enψn
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(
−h̄

2∇2

2m
+
∫
e2ρ(~r′)
|~r − ~r′|

d3~r + Vext(~r) + VXC(~r)

)
ψn = Enψn

where

EN =
occupied∑

n

En

ρ(~r) =
occupied∑

n

ψn(~r)ψ∗n(~r)

So, one has a prescription on how to do calculations:

1. Create an initial charge density ρ0

2. Define HKS = HKS[ρ0]

3. Solve HKSψn = Enψn

4. Construct the new charge density ρ(~r) =
∑occupied

n ψn(~r)ψ∗n(~r)

5. If |ρ − ρ0| is small, than stop, otherwise start again with
ρ0 = ρ
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There is only one problem .... VXC in NOT known !!

However it is known for a uniform electron gas. Usually one
approximates VXC with the exchange- correlation potential of a
uniform electron gas:

VXC[ρ((~r)] −→ VXC(~r)

This is the Local Density Approximation (LDA).

Remarkably it works extremely well !!!!
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