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PY4T01l Condensed Matter Theory: Lecture 16

Mean field approximation

Can we solve the many-particle problem?

HU — €0 Z ﬁMU + 8 Z(CJ{UCQU + Cgaclg) + U Z ﬁ’MTﬁ’Ml
Y

Uo o

Let us re-write the Hubbard term

Uzﬁmﬁul — UZ Py — (P — )] [y — (g — )] =
p T

= UZ [t = 0ftpp] [y — Oy
u
with n,, = (N,s) and we have introduced the fluctuation

operator 01,

By expanding we obtain

U  fptiuy = U [nugnug — m16f — nu 0 + 6 0]
I 0
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The mean field approximation consists in neglecting the
fluctuation-fluctuation term

v Z Ay ~ U Z Pt Pl — M 0M ) — 1y OTpp] =
p p

U Y [ty + it — npig)
n

This is now a single-particle Hamiltonian!

Hy =3, [fur(eo + Unyp) + Ay (€0 + Unyp)]+
+7 20(611-0020- + 050610)%—
—U >, nuini)

where the on-site energy depends on the spin-occupation n,,

In general one needs a self-consistent solution, i.e. we have
to determine n,,. For the case of Hj this is however simple.
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How does the new on-site (mean field) term work? Consider
the case of one atom only.

HO = flT(Eo + Uni) +ﬁl(€0 + UTZT) = ﬁT’Ul —|-7A7/“JT

eO+U_ /__i__ 80+U
/
/
/
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/
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€L ? le,
0 1 2
N

The potential for spin T depends on the population of spin
| and viceversa.
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Let us revise the N=2 case.

Since now there is no electron-electron operator (no operator
in c'cfec) we can simply use

[¥) = 1| T,0) + [0, 1)

or

) = 1] 1, 0) + 2|0, ])

Take for instance spin T. The Hamiltonian matrix then is
€0+ Uny Y 1\ (]
Y eo + Ung| (05 (05

This is formally the Hamiltonian equation for the
heteronuclear molecule. However because Hs is homonuclear
then one has n1, = ny, = 1/2 n, (this is because of inversion
symmetry). The the solution is:

U 1

Ellond €0 + 9 >N+, |¢b0nd> 7 H T, > + ‘07 T>]
U 1

Ee[ntl = €0+ Enl - |¢anti> — 7 H T? > |07 T>]
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Now repeat the same for |

1,00 +10,1)]

Sl

U
Ell;ond = €0 —I_ _nT —|_ Y |wb0nd> —

2 2

U 1
By = €0+ 51 =% ans) = 511,00 =10, 1)

Finally calculate the ground state energy for two electrons
(1 and |). Note that nT = n! =1, then

U
E‘gond — E‘éond — €0 + 5+ g

2
U
Ezlnti — Einti = €0 T 5 — 7

The total energy finally is

Ertotal = E‘gond + Eéond -U Z Mty
L

Etotal — 2(60 + ’7) + U/2
to compare with that of the fully interacting case

U U? + 16~2
B = 260+ 2 = Y% ot~y + /2

[y|U?
16~2
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If n,, are not know a preori then the calculation need to be

self-consistent:

Set an initial {n .}

Construct H,

and solve the
Sch. equation

Calculate new {n .}

Are new
{n,} the
same as the
old ?

YES

NO
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Functional theory

Is there a better and more precise way of finding the ground
state energy? Yes, one can define the problem via a variational
principle

Egs = m1Il|\1;> <\IJ‘HU‘\I]>7 <\Ij| Zﬁuo‘qj> =N
o

One has to search for the |¥) that minimizes the functional —
still an impossible task (the Hilbert space for |¥) is enormous).

What if the many-particle wave-function is itself a functional
of some simpler quantity? For instance

V) = [Y[{nue}])

then
Egs = ming, .3 (Y[{nue | Hu|Y[{nus}])

One now has to find the set of occupation numbers {n,, }
which minimize the energy.
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Example (somehow trivial but useful):

Consider the non-interacting U = 0 infinite chain of H atoms
and an equal number of T and | electrons so that the filling
factors are

VT = Vl =N

The total energy (per site) is uniquely defined by n (average
spin occupation per site). In fact:

n = /EF d(F)dE

— o0

Ep
€gs — / d(E)E dFE

One can show that

4
eaqs = 2neg + =Y sin (nm)
T
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The crucial point is that this is possible for the interacting
case as well. The statement is:

1. The central quantity of the theory is the site occupation

Nye — <\Ij’ﬁ1/a‘\p>

2. Theorem |: The ground state energy and any other ground
state observables are unique function of the site occupation.

E[{nuo}] = Fl{nue ]l + Y evnue

3. Theorem |l: The site occupation that minimizes the total
energy functional is the exact ground state site occupation.

El{n.s}as| = Eas

[O. Gunnarsson and K. Schonhammer, Phys. Rev. Lett. 56,
1968 (1986); K. Schonhammer, O. Gunnarsson and R.M. Noack,
Phys. Rev. B. 52, 2504 (1995)]
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Ab-initio Theories

Lattice DFT is just a special case of a much more general
method called ab initio density functional theory.

It is based on the famous Hohenberg-Kohn Theorem
[P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)]

— Typeset by Foil TEX — 10



PY4T01 Condensed Matter Theory: Lecture 16 Stefano Sanvito

which says:

The ground state energy En of a system of N electrons
(interacting!!) is a unique, universal functional of the single
particle charge density p(7)

En|p(r)] = T[p(7)] + Eclp(7)] + Eext|p(T)] + Exclp(T)]

—

Moreover the ground state charge density pas(7) is such
that:

Enlpas] < En|p]

Therefore we have:

e A universal definition of the system energy

e A variational principle

How do we do calculations in practice?

Kohn and Sham demonstrated that the search for the ground
state energy and charge density can be mapped onto single-
particle problem.
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h2V?2 e?p(r")
— d3_) ex ¥ ¥ n — L/mn
< - +/|F_m 7+ Veat(7) + Vxo(7) | ¥ (0

where
occupied
Exy= ) E,
n
occupied

p(M) = > Un(PU5(7)
So, one has a prescription on how to do calculations:

1. Create an initial charge density pg
2. Define Hxs = His|pol
3. Solve Hi s, = Epy,

4. Construct the new charge density p(7) = Zoccumed U (P (F)

n

5. If |p — po| is small, than stop, otherwise start again with
po = p
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There is only one problem .... Vxc in NOT known !!

However it is known for a uniform electron gas. Usually one
approximates Vx o with the exchange- correlation potential of a
uniform electron gas:

Vxelp((r)] — Vxol(7)

This is the Local Density Approximation (LDA).

Remarkably it works extremely well 1!
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