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PY4T01 Condensed Matter Theory: Lecture 15

Introducing electron-electron interaction

Let us go back to the H2 molecule and re-write H as (second
quantization formalism)

H = ε0

2∑
ν=1

c†νcν + γ
[
c†1c2 + c†2c1

]
The operators cν and c†µ are defined as

cν|0ν〉 = 0 c†ν|0ν〉 = |1ν〉
cν|1ν〉 = |0ν〉 c†ν|1ν〉 = 0

A particular electronic configuration of the H2 molecule is
written in terms of the vectors

|α1, α2〉 where αν = 0, 1
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H acts as following:

1. The first term “counts” electrons

c†1c1|α1, α2〉 = n̂1|α1, α2〉 = α1|α1, α2〉

2. The second term “transfers” electrons

c†1c2|01, 12〉 = |11, 02〉

The problem can be then solved as usual.

1. Take a generic wave-function written on this “new” basis

|ψ〉 = ψ1|11, 02〉+ ψ2|01, 12〉

2. Expand the Schrödinger equation

H|ψ〉 = ε0

2∑
ν=1

c†νcν|ψ〉+ γ
[
c†1c2 + c†2c1

]
|ψ〉 = E|ψ〉

ε0

2∑
ν=1

c†νcν|ψ〉 = ε0|ψ〉
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γ
[
c†1c2 + c†2c1

]
(ψ1|11, 02〉+ ψ2|01, 12〉) =

= γ (ψ1|01, 12〉+ ψ2|11, 02〉)

3. Project over 〈α1, α2| by using

〈α1, α2|β1, β2〉 = δα1,β1δα2,β2

to obtain  ε0ψ1 + γψ2 = Eψ1

γψ1 + ε0ψ2 = Eψ2

4. Solve (
ε0 γ
γ ε0

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
5. We obtain the known solutions

Ebond = ε0 + γ, |ψbond〉 =
1√
2

[|11, 02〉+ |01, 12〉]

Eanti = ε0 − γ, |ψanti〉 =
1√
2

[|11, 02〉 − |01, 12〉]
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Note:

The action of the operators cν and c†µ is defined by their
algebra given by the anti-commutation rules:

{c†µ, c†ν} = {cµ, cν} = 0 {cµ, c†ν} = δµ,ν

with
{A,B} = AB +BA

It then follows

1. The eigenvalues of c†νcν are 0 or 1

(
c†νcν

)2
= c†ν

(
cνc

†
ν

)
cν = c†ν

(
1− c†νcν

)
cν = c†νcν

c†νcν|nν〉 = nν|nν〉
(c†νcν)

2|nν〉 = n2
ν|nν〉

}
→ nν = 0, 1

2. c†νcν|nν〉 = nν|nν〉 → c†νcν(cν|nν〉) = (1−nν)cν|nν〉
with nν = 1

3. c†νcν|nν〉 = nν|nν〉 → c†νcν(c
†
ν|nν〉) = (1−nν)c†ν|nν〉

with nν = 0
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Second Quantization (very quick)

Let us go back to the time-dependent Schrödinger equation

ih̄Ψ̇(r) =

[
−h̄

2∇2

2m
+ U(r)

]
Ψ(r)

This is an “equation of motion”, which can be derived from the
Lagrangian density

L = ih̄Ψ†Ψ̇− h̄2

2m
∇Ψ† · ∇Ψ− U(r)Ψ†Ψ

If Ψ is the dynamical variable the conjugate momentum is

π =
∂L

∂Ψ̇
= ih̄Ψ†

The Hamiltonian density is given by

H = πΨ̇− L =
h̄2

2m
∇Ψ† · ∇Ψ + UΨ†Ψ

and the Hamiltonian is obtained by integrating

H =
∫
H d3r =

∫
Ψ†

(
−h̄

2∇2

2m
+ U

)
Ψ d3r
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Second quantization consists in making Ψ and Ψ†

operators (quantum fields) satisfying the following anti-
commutation relations (for fermions)

{Ψ(r),Ψ†(r′)} = δ(r− r′)

{Ψ†(r),Ψ†(r′)} = {Ψ(r),Ψ(r′)} = 0

This is due to Jordan and Wigner (1928). Particles satisfying
the anticommutation rules are Fermions.

Now the operators c†ν and cν can be introduced. Expand the
wave function over a convenient basis. For a chain of H atom
if φν(r) is the 1s orbital located at r−Rν

Ψ(r) =
∑

ν

cνφν(r)

Ψ†(r) =
∑

ν

c†νφν(r)

Finally from the anticommutation relations for the fields
(integrating in r):

{c†µ, c†ν} = {cµ, cν} = 0 {cµ, c†ν} = δµ,ν
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What about the Hamiltonian?

H =
∫

Ψ†

(
−h̄

2∇2

2m
+ U

)
Ψ d3r

H =
∑
µ,ν

[∫
φµ(r)

(
−h̄

2∇2

2m
+ U

)
φν(r) d3r

]
c†µcν

H =
∑
µ,ν

Hµνc
†
µcν

where Hµν is the Hamiltonian matrix (as derived from the
tight-binding method)

(For more details see: G.D. Mahan, Many-Particle Physics,
Kluwer Academic)
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Many-particle operators

The Coulomb electron-electron interaction depends on the
position of two electrons

1
2

∑
i

∑
j 6=i

V (ri − rj) =
1
2

∑
i

∑
j 6=i

e2

|ri − rj|

In second quantization this leads to the operator

He−e =
1
2

∑
νiνjνkνl

Vνiνjνkνl
c†νi
c†νk
cνl
cνj

with

Vνiνjνkνl
=
∫
d3ri

∫
d3rj φνi

(ri)φνj
(ri)

e2

|ri − rj|
φνk

(rj)φνl
(rj)
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The Hubbard model for H2

Consider the Hubbard Hamiltonian for H2

HU = ε0
∑
µσ

n̂µσ + γ
∑

σ

(c†1σc2σ + c†2σc1σ) + U
∑

µ

n̂µ↑n̂µ↓

where

1. c†µσ

creates an electron on the H atom at Rµ with spin σ =↑, ↓

2. cµσ

destroys an electron on the H atom at Rµ with spin σ =↑, ↓

3. ε0
∑

µσ n̂µσ + γ
∑

σ(c†1σc2σ + c†2σc1σ)

is the standard (non-interacting tight-binding Hamiltonian
for H2)

4. U
∑

µ n̂µ↑n̂µ↓

is the on-site Coulomb repulsion
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Consider the case of the H atom. Then

HU = ε0
∑

σ

n̂σ + Un̂↑n̂↓

For interacting system the spectrum depends on the
number of electrons
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Solving the Hubbard model for H2

Solve for different N = n↑ + n↓

N=0

Only the trivial solution

E = 0, |ψ〉 = 0

N=1

The wave-function can be written as

|ψ〉 = ψ1| ↑, 0〉+ ψ2|0, ↑〉

or

|ψ〉 = ψ1| ↓, 0〉+ ψ2|0, ↓〉

where
|σ, 0〉 = c†1σ|0, 0〉
|0, σ〉 = c†2σ|0, 0〉

this is completely equivalent to the case done at
the very beginning (note that U

∑
µ n̂µ↑n̂µ↓|σ, 0〉 =

U
∑

µ n̂µ↑n̂µ↓|0, σ〉 = 0)
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The Hamiltonian matrix then is

(
ε0 γ
γ ε0

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
with solutions

Ebond = ε0 + γ, |ψbond〉 =
1√
2

[|σ, 0〉+ |0, σ〉]

Eanti = ε0 − γ, |ψanti〉 =
1√
2

[|σ, 0〉 − |0, σ〉]

and total energy

Etotal = ε0 + γ

Note that the solution has spin σ (1/2), but it is doubly
degenerate.
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N=2

There are six possible electronic configurations (states)

1. |1〉 = | ↑, ↓〉 = c†1↑c
†
2↓|0, 0〉

2. |2〉 = | ↓, ↑〉 = c†1↓c
†
2↑|0, 0〉

3. |3〉 = | ↓↑, 0〉 = c†1↓c
†
1↑|0, 0〉

4. |4〉 = |0, ↓↑〉 = c†2↓c
†
2↑|0, 0〉

5. |5〉 = | ↑, ↑〉 = c†1↑c
†
2↑|0, 0〉

6. |6〉 = | ↓, ↓〉 = c†1↓c
†
2↓|0, 0〉

Note that for |1〉, |2〉, |3〉, |4〉, n↑ = n↓ = 1, i.e. they are
spin singlet. Instead |5〉, |6〉 are spin triplet, i.e. nσ = 2. Since
there is no term in the Hamiltonian which flips the spin there
are no matrix element between {|1〉, |2〉, |3〉, |4〉} and either |5〉
or |6〉. Now calculate the energy.

Triplets

|ψ〉 = |5〉 or |ψ〉 = |6〉
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and
Etotal = 2ε0

Singlets

The wave-function is then written on the {|1〉, |2〉, |3〉, |4〉}
basis set

|ψ〉 = ψ1|1〉+ ψ2|2〉+ ψ3|3〉+ ψ4|4〉

again one writes

HU|ψ〉 = E|ψ〉

and project over |j〉 (j = 1, 2, 3, 4)

This finally gives the matrix equation
2ε0 0 γ γ
0 2ε0 γ γ
γ γ 2ε0 + U 0
γ γ 0 2ε0 + U




ψ1

ψ2

ψ3

ψ4

 = E


ψ1

ψ2

ψ3

ψ4



The solutions are (eigenvalues and eigenvectors)

ε1 = 2ε0 +
U

2
−
√
U2 + 16γ2

2
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|ψ1〉 =
1√
2

[{|1〉+ |2〉} cos θ + {|3〉+ |4〉} sin θ]

ε2 = 2ε0 +
U

2
+

√
U2 + 16γ2

2

|ψ2〉 =
1√
2

[−{|1〉+ |2〉} sin θ + {|3〉+ |4〉} cos θ]

ε3 = 2ε0

|ψ3〉 =
1√
2
(|1〉 − |2〉)

ε4 = 2ε0 + U

|ψ4〉 =
1√
2
(|3〉 − |4〉),

where

tan θ =
−4γ

U +
√
U2 + 16γ2

.

The ground state energy is therefore the one given by Etotal =
ε1.
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Note that:

1. For γ = 0 (two isolated H atoms)

ε1 = 2ε0, |ψ1〉 =
1√
2
(|1〉+ |2〉)

ε2 = 2ε0 + U, |ψ2〉 =
1√
2
(|3〉+ |4〉)

ε3 = 2ε0, |ψ3〉 =
1√
2
(|1〉 − |2〉)

ε4 = 2ε0 + U, |ψ4〉 =
1√
2
(|3〉 − |4〉),

2. For U = 0 (non-interacting)

ε1 = 2(ε0 − γ), |ψ1〉 =
1√
2
(|1〉+ |2〉 − |3〉 − |4〉)

ε2 = 2(ε0 + γ), |ψ2〉 =
1√
2
(|1〉+ |2〉+ |3〉+ |4〉)

ε3 = 2ε0, |ψ3〉 =
1√
2
(|1〉 − |2〉)

ε4 = 2ε0, |ψ4〉 =
1√
2
(|3〉 − |4〉),

– Typeset by FoilTEX – 16



PY4T01 Condensed Matter Theory: Lecture 15 Stefano Sanvito

Note also that: One does not necessarily need to separate
singlet and triplet. The full basis can be used:

|ψ〉 = ψ1|1〉+ ψ2|2〉+ ψ3|3〉+ ψ4|4〉+ ψ5|5〉+ ψ6|6〉

and the Hamiltonian matrix becomes



2ε0 0 γ γ 0 0
0 2ε0 γ γ 0 0
γ γ 2ε0 + U 0 0 0
γ γ 0 2ε0 + U 0 0
0 0 0 0 2ε0 0
0 0 0 0 0 2ε0




ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

 = E


ψ1

ψ2

ψ3

ψ4

ψ5

ψ6


N=3

The wave-function can be written as

|ψ〉 = ψ1| ↑, ↑↓〉+ ψ2| ↑↓, ↑〉

or

|ψ〉 = ψ1| ↓, ↑↓〉+ ψ2| ↑↓, ↓〉
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where
|σ, ↑↓〉 = c†1σc

†
2↑c

†
2↓|0, 0〉

| ↑↓, σ〉 = c†2σc
†
1↑c

†
1↓|0, 0〉

this is similar to the N = 1 case (U
∑

µ n̂µ↑n̂µ↓|σ, ↑↓〉 =
U |σ, ↑↓〉)

The Hamiltonian matrix then is

(
3ε0 + U γ

γ 3ε0 + U

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
with solutions

Ebond = 3ε0 + U + γ, |ψbond〉 =
1√
2

[|σ, ↑↓〉+ | ↑↓, σ〉]

Eanti = 3ε0 + U − γ, |ψanti〉 =
1√
2

[|σ, ↑↓〉 − | ↑↓, σ〉]

and total energy

Etotal = 3ε0 + U + γ

Note that the solution has spin σ (1/2), but it is doubly
degenerate.
– Typeset by FoilTEX – 18



PY4T01 Condensed Matter Theory: Lecture 15 Stefano Sanvito

N=4

Only the trivial solution

Etotal = 4ε0 + 2U, |ψ〉 = | ↑↓, ↑↓〉

Let us summarize the spectrum found

N spectrum

0 0
1 ε0 + γ × 2

ε0 − γ × 2

2 2ε0 + U
2 −

√
U2+16γ2

2

2ε0 + U
2 +

√
U2+16γ2

2
2ε0
2ε0 + U
2ε0
2ε0

3 3ε0 + U + γ × 2
3ε0 + U − γ × 2

4 4ε0 + 2U
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How complicate can it get?

In general the wave-function need to be constructed over the
basis defined by

|Ψκ〉 = (ΠN
i ĉ

†
iσ)|0〉, (1)

The matrix elements of HU are

Hij = 〈Ψi|HU|Ψj〉. (2)

For a L-sites and n↑ and n↓ electrons the number of basis
function is

κ =
(
L

n↑

)
·
(
L

n↓

)
, where,

(
m

n

)
=

m!
n!(m− n)!

. (3)

The scaling is terrible!!
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L n↑ n↓ Hilbert Space dimension

2 1 1 4
4 2 2 36
6 3 3 400
8 4 4 4,900
10 5 5 63,504
12 6 6 853,776
14 7 7 11,778,624
16 8 8 165,636,900
18 9 9 2,363,904,400
20 10 10 34,134,779,536

System L N Hilbert Space Time Memory

Na2 2 2 4 1 µsec 128b
Na6 6 6 400 1 sec 1.2Mb
Na10 10 10 63,504 46 days 3.2Gb
Na12 12 12 853,776 308 years 43Gb
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