PY4T01 Condensed Matter Theory: Lecture 15

Introducing electron-electron interaction

Let us go back to the H_{2} molecule and re-write H as (second quantization formalism)

$$
H=\epsilon_{0} \sum_{\nu=1}^{2} c_{\nu}^{\dagger} c_{\nu}+\gamma\left[c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}\right]
$$

The operators c_{ν} and c_{μ}^{\dagger} are defined as

$$
\begin{array}{lrl}
c_{\nu}\left|0_{\nu}\right\rangle & =0 & c_{\nu}^{\dagger}\left|0_{\nu}\right\rangle=\left|1_{\nu}\right\rangle \\
c_{\nu}\left|1_{\nu}\right\rangle & =\left|0_{\nu}\right\rangle & c_{\nu}^{\dagger}\left|1_{\nu}\right\rangle=0
\end{array}
$$

A particular electronic configuration of the H_{2} molecule is written in terms of the vectors

$$
\left|\alpha_{1}, \alpha_{2}\right\rangle \quad \text { where } \quad \alpha_{\nu}=0,1
$$

H acts as following:

1. The first term "counts" electrons

$$
c_{1}^{\dagger} c_{1}\left|\alpha_{1}, \alpha_{2}\right\rangle=\hat{n}_{1}\left|\alpha_{1}, \alpha_{2}\right\rangle=\alpha_{1}\left|\alpha_{1}, \alpha_{2}\right\rangle
$$

2. The second term "transfers" electrons

$$
c_{1}^{\dagger} c_{2}\left|0_{1}, 1_{2}\right\rangle=\left|1_{1}, 0_{2}\right\rangle
$$

The problem can be then solved as usual.

1. Take a generic wave-function written on this "new" basis

$$
|\psi\rangle=\psi_{1}\left|1_{1}, 0_{2}\right\rangle+\psi_{2}\left|0_{1}, 1_{2}\right\rangle
$$

2. Expand the Schrödinger equation

$$
\begin{gathered}
H|\psi\rangle=\epsilon_{0} \sum_{\nu=1}^{2} c_{\nu}^{\dagger} c_{\nu}|\psi\rangle+\gamma\left[c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}\right]|\psi\rangle=E|\psi\rangle \\
\epsilon_{0} \sum_{\nu=1}^{2} c_{\nu}^{\dagger} c_{\nu}|\psi\rangle=\epsilon_{0}|\psi\rangle
\end{gathered}
$$

$$
\begin{gathered}
\gamma\left[c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}\right]\left(\psi_{1}\left|1_{1}, 0_{2}\right\rangle+\psi_{2}\left|0_{1}, 1_{2}\right\rangle\right)= \\
=\gamma\left(\psi_{1}\left|0_{1}, 1_{2}\right\rangle+\psi_{2}\left|1_{1}, 0_{2}\right\rangle\right)
\end{gathered}
$$

3. Project over $\left\langle\alpha_{1}, \alpha_{2}\right|$ by using

$$
\left\langle\alpha_{1}, \alpha_{2} \mid \beta_{1}, \beta_{2}\right\rangle=\delta_{\alpha_{1}, \beta_{1}} \delta_{\alpha_{2}, \beta_{2}}
$$

to obtain

$$
\left\{\begin{array}{l}
\epsilon_{0} \psi_{1}+\gamma \psi_{2}=E \psi_{1} \\
\gamma \psi_{1}+\epsilon_{0} \psi_{2}=E \psi_{2}
\end{array}\right.
$$

4. Solve

$$
\left(\begin{array}{cc}
\epsilon_{0} & \gamma \\
\gamma & \epsilon_{0}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=E\binom{\psi_{1}}{\psi_{2}}
$$

5. We obtain the known solutions

$$
\begin{aligned}
& E_{\mathrm{bond}}=\epsilon_{0}+\gamma, \quad\left|\psi_{\mathrm{bond}}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|1_{1}, 0_{2}\right\rangle+\left|0_{1}, 1_{2}\right\rangle\right] \\
& E_{\text {anti }}=\epsilon_{0}-\gamma, \quad\left|\psi_{\mathrm{anti}}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|1_{1}, 0_{2}\right\rangle-\left|0_{1}, 1_{2}\right\rangle\right]
\end{aligned}
$$

Note:

The action of the operators c_{ν} and c_{μ}^{\dagger} is defined by their algebra given by the anti-commutation rules:

$$
\left\{c_{\mu}^{\dagger}, c_{\nu}^{\dagger}\right\}=\left\{c_{\mu}, c_{\nu}\right\}=0 \quad\left\{c_{\mu}, c_{\nu}^{\dagger}\right\}=\delta_{\mu, \nu}
$$

with

$$
\{A, B\}=A B+B A
$$

It then follows

1. The eigenvalues of $c_{\nu}^{\dagger} c_{\nu}$ are 0 or 1

$$
\begin{gathered}
\left(c_{\nu}^{\dagger} c_{\nu}\right)^{2}=c_{\nu}^{\dagger}\left(c_{\nu} c_{\nu}^{\dagger}\right) c_{\nu}=c_{\nu}^{\dagger}\left(1-c_{\nu}^{\dagger} c_{\nu}\right) c_{\nu}=c_{\nu}^{\dagger} c_{\nu} \\
\left.\begin{array}{c}
c_{\nu}^{\dagger} c_{\nu}\left|n_{\nu}\right\rangle=n_{\nu}\left|n_{\nu}\right\rangle \\
\left(c_{\nu}^{\dagger} c_{\nu}\right)^{2}\left|n_{\nu}\right\rangle=n_{\nu}^{2}\left|n_{\nu}\right\rangle
\end{array}\right\} \rightarrow n_{\nu}=0,1
\end{gathered}
$$

2. $c_{\nu}^{\dagger} c_{\nu}\left|n_{\nu}\right\rangle=n_{\nu}\left|n_{\nu}\right\rangle \rightarrow c_{\nu}^{\dagger} c_{\nu}\left(c_{\nu}\left|n_{\nu}\right\rangle\right)=\left(1-n_{\nu}\right) c_{\nu}\left|n_{\nu}\right\rangle$ with $n_{\nu}=1$
3. $c_{\nu}^{\dagger} c_{\nu}\left|n_{\nu}\right\rangle=n_{\nu}\left|n_{\nu}\right\rangle \rightarrow c_{\nu}^{\dagger} c_{\nu}\left(c_{\nu}^{\dagger}\left|n_{\nu}\right\rangle\right)=\left(1-n_{\nu}\right) c_{\nu}^{\dagger}\left|n_{\nu}\right\rangle$ with $n_{\nu}=0$

Second Quantization (very quick)

Let us go back to the time-dependent Schrödinger equation

$$
i \hbar \dot{\Psi}(\mathbf{r})=\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+U(\mathbf{r})\right] \Psi(\mathbf{r})
$$

This is an "equation of motion", which can be derived from the Lagrangian density

$$
L=i \hbar \Psi^{\dagger} \dot{\Psi}-\frac{\hbar^{2}}{2 m} \nabla \Psi^{\dagger} \cdot \nabla \Psi-U(\mathbf{r}) \Psi^{\dagger} \Psi
$$

If Ψ is the dynamical variable the conjugate momentum is

$$
\pi=\frac{\partial L}{\partial \dot{\Psi}}=i \hbar \Psi^{\dagger}
$$

The Hamiltonian density is given by

$$
\mathcal{H}=\pi \dot{\Psi}-L=\frac{\hbar^{2}}{2 m} \nabla \Psi^{\dagger} \cdot \nabla \Psi+U \Psi^{\dagger} \Psi
$$

and the Hamiltonian is obtained by integrating

$$
H=\int \mathcal{H} d^{3} \mathbf{r}=\int \Psi^{\dagger}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+U\right) \Psi d^{3} \mathbf{r}
$$

Second quantization consists in making Ψ and Ψ^{\dagger} operators (quantum fields) satisfying the following anticommutation relations (for fermions)

$$
\begin{gathered}
\left\{\Psi(\mathbf{r}), \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\left\{\Psi^{\dagger}(\mathbf{r}), \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\}=\left\{\Psi(\mathbf{r}), \Psi\left(\mathbf{r}^{\prime}\right)\right\}=0
\end{gathered}
$$

This is due to Jordan and Wigner (1928). Particles satisfying the anticommutation rules are Fermions.

Now the operators c_{ν}^{\dagger} and c_{ν} can be introduced. Expand the wave function over a convenient basis. For a chain of H atom if $\phi_{\nu}(\mathbf{r})$ is the $1 s$ orbital located at $\mathbf{r}-\mathbf{R}_{\nu}$

$$
\begin{aligned}
\Psi(\mathbf{r}) & =\sum_{\nu} c_{\nu} \phi_{\nu}(\mathbf{r}) \\
\Psi^{\dagger}(\mathbf{r}) & =\sum_{\nu} c_{\nu}^{\dagger} \phi_{\nu}(\mathbf{r})
\end{aligned}
$$

Finally from the anticommutation relations for the fields (integrating in \mathbf{r}):

$$
\left\{c_{\mu}^{\dagger}, c_{\nu}^{\dagger}\right\}=\left\{c_{\mu}, c_{\nu}\right\}=0 \quad\left\{c_{\mu}, c_{\nu}^{\dagger}\right\}=\delta_{\mu, \nu}
$$

What about the Hamiltonian?

$$
\begin{gathered}
H=\int \Psi^{\dagger}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+U\right) \Psi d^{3} \mathbf{r} \\
H=\sum_{\mu, \nu}\left[\int \phi_{\mu}(\mathbf{r})\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+U\right) \phi_{\nu}(\mathbf{r}) d^{3} \mathbf{r}\right] c_{\mu}^{\dagger} c_{\nu}
\end{gathered}
$$

$$
H=\sum_{\mu, \nu} H_{\mu \nu} c_{\mu}^{\dagger} c_{\nu}
$$

where $H_{\mu \nu}$ is the Hamiltonian matrix (as derived from the tight-binding method)
(For more details see: G.D. Mahan, Many-Particle Physics, Kluwer Academic)

Many-particle operators

The Coulomb electron-electron interaction depends on the position of two electrons

$$
\frac{1}{2} \sum_{i} \sum_{j \neq i} V\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)=\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

In second quantization this leads to the operator

$$
H_{\mathrm{e}-\mathrm{e}}=\frac{1}{2} \sum_{\nu_{i} \nu_{j} \nu_{k} \nu_{l}} V_{\nu_{i} \nu_{j} \nu_{k} \nu_{l}} c_{\nu_{i}}^{\dagger} c_{\nu_{k}}^{\dagger} c_{\nu_{l}} c_{\nu_{j}}
$$

with

$$
V_{\nu_{i} \nu_{j} \nu_{k} \nu_{l}}=\int d^{3} \mathbf{r}_{i} \int d^{3} \mathbf{r}_{j} \phi_{\nu_{i}}\left(\mathbf{r}_{i}\right) \phi_{\nu_{j}}\left(\mathbf{r}_{i}\right) \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \phi_{\nu_{k}}\left(\mathbf{r}_{j}\right) \phi_{\nu_{l}}\left(\mathbf{r}_{j}\right)
$$

The Hubbard model for H_{2}

Consider the Hubbard Hamiltonian for H_{2}

$$
H_{\mathrm{U}}=\epsilon_{0} \sum_{\mu \sigma} \hat{n}_{\mu \sigma}+\gamma \sum_{\sigma}\left(c_{1 \sigma}^{\dagger} c_{2 \sigma}+c_{2 \sigma}^{\dagger} c_{1 \sigma}\right)+U \sum_{\mu} \hat{n}_{\mu \uparrow} \hat{n}_{\mu \downarrow}
$$

where

1. $c_{\mu \sigma}^{\dagger}$
creates an electron on the H atom at \mathbf{R}_{μ} with spin $\sigma=\uparrow, \downarrow$
2. $c_{\mu \sigma}$
destroys an electron on the H atom at \mathbf{R}_{μ} with spin $\sigma=\uparrow, \downarrow$
3. $\epsilon_{0} \sum_{\mu \sigma} \hat{n}_{\mu \sigma}+\gamma \sum_{\sigma}\left(c_{1 \sigma}^{\dagger} c_{2 \sigma}+c_{2 \sigma}^{\dagger} c_{1 \sigma}\right)$
is the standard (non-interacting tight-binding Hamiltonian for H_{2})
4. $U \sum_{\mu} \hat{n}_{\mu \uparrow} \hat{n}_{\mu \downarrow}$
is the on-site Coulomb repulsion

Consider the case of the H atom. Then

$$
H_{\mathrm{U}}=\epsilon_{0} \sum_{\sigma} \hat{n}_{\sigma}+U \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

$U=0$			
No. e^{-}	$\mid \Psi \neq-$		
0	$\mid 0>-$	0	0
1	$\mid \uparrow>^{-}$	ε_{0}	ε_{0}
2	$\mid \downarrow>^{-}$		
2\rangle^{\prime}	$2 \varepsilon_{0}$	$2 \varepsilon_{0}+U$	

For interacting system the spectrum depends on the number of electrons

Solving the Hubbard model for \mathbf{H}_{2}

Solve for different $N=n_{\uparrow}+n_{\downarrow}$
$\mathrm{N}=\mathbf{0}$
Only the trivial solution

$$
E=0, \quad|\psi\rangle=0
$$

$\mathrm{N}=1$
The wave-function can be written as

$$
\begin{gathered}
|\psi\rangle=\psi_{1}|\uparrow, 0\rangle+\psi_{2}|0, \uparrow\rangle \\
\text { or } \\
|\psi\rangle=\psi_{1}|\downarrow, 0\rangle+\psi_{2}|0, \downarrow\rangle
\end{gathered}
$$

where

$$
\begin{aligned}
& |\sigma, 0\rangle=c_{1 \sigma}^{\dagger}|0,0\rangle \\
& |0, \sigma\rangle=c_{2 \sigma}^{\dagger}|0,0\rangle
\end{aligned}
$$

this is completely equivalent to the case done at the very beginning (note that $U \sum_{\mu} \hat{n}_{\mu \uparrow} \hat{n}_{\mu \downarrow}|\sigma, 0\rangle=$ $\left.U \sum_{\mu} \hat{n}_{\mu \uparrow} \hat{n}_{\mu \downarrow}|0, \sigma\rangle=0\right)$

- Typeset by FoilTEX -

The Hamiltonian matrix then is

$$
\left(\begin{array}{cc}
\epsilon_{0} & \gamma \\
\gamma & \epsilon_{0}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=E\binom{\psi_{1}}{\psi_{2}}
$$

with solutions

$$
\begin{gathered}
E_{\text {bond }}=\epsilon_{0}+\gamma, \quad\left|\psi_{\text {bond }}\right\rangle=\frac{1}{\sqrt{2}}[|\sigma, 0\rangle+|0, \sigma\rangle] \\
E_{\text {anti }}=\epsilon_{0}-\gamma, \quad\left|\psi_{\text {anti }}\right\rangle=\frac{1}{\sqrt{2}}[|\sigma, 0\rangle-|0, \sigma\rangle]
\end{gathered}
$$

and total energy

$$
E_{\text {total }}=\epsilon_{0}+\gamma
$$

Note that the solution has spin $\sigma(1 / 2)$, but it is doubly degenerate.

$\mathrm{N}=2$

There are six possible electronic configurations (states)

1. $|1\rangle=|\uparrow, \downarrow\rangle=c_{1 \uparrow}^{\dagger} \uparrow_{2 \downarrow}^{\dagger}|0,0\rangle$
2. $|2\rangle=|\downarrow, \uparrow\rangle=c_{1 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0,0\rangle$
3. $|3\rangle=|\downarrow \uparrow, 0\rangle=c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0,0\rangle$
4. $|4\rangle=|0, \downarrow \uparrow\rangle=c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0,0\rangle$
5. $|5\rangle=|\uparrow, \uparrow\rangle=c_{1 \uparrow}^{\dagger} \uparrow_{2 \uparrow}^{\dagger}|0,0\rangle$
6. $|6\rangle=|\downarrow, \downarrow\rangle=c_{1 \downarrow}^{\dagger} \iota_{2 \downarrow}^{\dagger}|0,0\rangle$

Note that for $|1\rangle,|2\rangle,|3\rangle,|4\rangle, n_{\uparrow}=n_{\downarrow}=1$, i.e. they are spin singlet. Instead $|5\rangle,|6\rangle$ are spin triplet, i.e. $n_{\sigma}=2$. Since there is no term in the Hamiltonian which flips the spin there are no matrix element between $\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\}$ and either $|5\rangle$ or $|6\rangle$. Now calculate the energy.

Triplets

$$
|\psi\rangle=|5\rangle \quad \text { or } \quad|\psi\rangle=|6\rangle
$$

and

$$
E_{\text {total }}=2 \epsilon_{0}
$$

Singlets

The wave-function is then written on the $\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\}$ basis set

$$
|\psi\rangle=\psi_{1}|1\rangle+\psi_{2}|2\rangle+\psi_{3}|3\rangle+\psi_{4}|4\rangle
$$

again one writes

$$
H_{\mathrm{U}}|\psi\rangle=E|\psi\rangle
$$

and project over $|j\rangle(j=1,2,3,4)$
This finally gives the matrix equation

$$
\left(\begin{array}{cccc}
2 \epsilon_{0} & 0 & \gamma & \gamma \\
0 & 2 \epsilon_{0} & \gamma & \gamma \\
\gamma & \gamma & 2 \epsilon_{0}+U & 0 \\
\gamma & \gamma & 0 & 2 \epsilon_{0}+U
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=E\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

The solutions are (eigenvalues and eigenvectors)

$$
\varepsilon_{1}=2 \epsilon_{0}+\frac{U}{2}-\frac{\sqrt{U^{2}+16 \gamma^{2}}}{2}
$$

$$
\begin{gathered}
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}[\{|1\rangle+|2\rangle\} \cos \theta+\{|3\rangle+|4\rangle\} \sin \theta] \\
\varepsilon_{2}=2 \epsilon_{0}+\frac{U}{2}+\frac{\sqrt{U^{2}+16 \gamma^{2}}}{2} \\
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}[-\{|1\rangle+|2\rangle\} \sin \theta+\{|3\rangle+|4\rangle\} \cos \theta] \\
\varepsilon_{3}=2 \epsilon_{0} \\
\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \\
\varepsilon_{4}=2 \epsilon_{0}+U \\
\left|\psi_{4}\right\rangle=\frac{1}{\sqrt{2}}(|3\rangle-|4\rangle)
\end{gathered}
$$

where

$$
\tan \theta=\frac{-4 \gamma}{U+\sqrt{U^{2}+16 \gamma^{2}}}
$$

The ground state energy is therefore the one given by $E_{\text {total }}=$ ε_{1}.

Note that:

1. For $\gamma=0$ (two isolated H atoms)

$$
\begin{gathered}
\varepsilon_{1}=2 \epsilon_{0}, \quad\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \\
\varepsilon_{2}=2 \epsilon_{0}+U, \quad\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|3\rangle+|4\rangle) \\
\varepsilon_{3}=2 \epsilon_{0}, \quad\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \\
\varepsilon_{4}=2 \epsilon_{0}+U, \quad\left|\psi_{4}\right\rangle=\frac{1}{\sqrt{2}}(|3\rangle-|4\rangle),
\end{gathered}
$$

2. For $U=0$ (non-interacting)

$$
\begin{gathered}
\varepsilon_{1}=2\left(\epsilon_{0}-\gamma\right), \quad\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle-|3\rangle-|4\rangle) \\
\varepsilon_{2}=2\left(\epsilon_{0}+\gamma\right), \quad\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle+|3\rangle+|4\rangle) \\
\varepsilon_{3}=2 \epsilon_{0}, \quad\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \\
\varepsilon_{4}=2 \epsilon_{0}, \quad\left|\psi_{4}\right\rangle=\frac{1}{\sqrt{2}}(|3\rangle-|4\rangle)
\end{gathered}
$$

Note also that: One does not necessarily need to separate singlet and triplet. The full basis can be used:

$$
|\psi\rangle=\psi_{1}|1\rangle+\psi_{2}|2\rangle+\psi_{3}|3\rangle+\psi_{4}|4\rangle+\psi_{5}|5\rangle+\psi_{6}|6\rangle
$$

and the Hamiltonian matrix becomes

$$
\left(\begin{array}{cccccc}
2 \epsilon_{0} & 0 & \gamma & \gamma & 0 & 0 \\
0 & 2 \epsilon_{0} & \gamma & \gamma & 0 & 0 \\
\gamma & \gamma & 2 \epsilon_{0}+U & 0 & 0 & 0 \\
\gamma & \gamma & 0 & 2 \epsilon_{0}+U & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \epsilon_{0} & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \epsilon_{0}
\end{array}\right)\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\psi_{5} \\
\psi_{6}
\end{array}\right)=E\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\psi_{5} \\
\psi_{6}
\end{array}\right.
$$

$\mathrm{N}=3$
The wave-function can be written as

$$
\begin{gathered}
|\psi\rangle=\psi_{1}|\uparrow, \uparrow \downarrow\rangle+\psi_{2}|\uparrow \downarrow, \uparrow\rangle \\
\text { or } \\
|\psi\rangle=\psi_{1}|\downarrow, \uparrow \downarrow\rangle+\psi_{2}|\uparrow \downarrow, \downarrow\rangle
\end{gathered}
$$

where

$$
\begin{aligned}
& |\sigma, \uparrow \downarrow\rangle=c_{1 \sigma}^{\dagger} c_{2 \uparrow}^{\dagger} c_{2 \downarrow}^{\dagger}|0,0\rangle \\
& |\uparrow \downarrow, \sigma\rangle=c_{2 \sigma}^{\dagger} c_{1 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0,0\rangle
\end{aligned}
$$

this is similar to the $N=1$ case $\left(U \sum_{\mu} \hat{n}_{\mu \uparrow} \hat{n}_{\mu \downarrow}|\sigma, \uparrow \downarrow\rangle=\right.$ $U|\sigma, \uparrow \downarrow\rangle)$

The Hamiltonian matrix then is

$$
\left(\begin{array}{cc}
3 \epsilon_{0}+U & \gamma \\
\gamma & 3 \epsilon_{0}+U
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=E\binom{\psi_{1}}{\psi_{2}}
$$

with solutions

$$
\begin{aligned}
& E_{\text {bond }}=3 \epsilon_{0}+U+\gamma, \quad\left|\psi_{\text {bond }}\right\rangle=\frac{1}{\sqrt{2}}[|\sigma, \uparrow \downarrow\rangle+|\uparrow \downarrow, \sigma\rangle] \\
& E_{\text {anti }}=3 \epsilon_{0}+U-\gamma, \quad\left|\psi_{\mathrm{anti}}\right\rangle=\frac{1}{\sqrt{2}}[|\sigma, \uparrow \downarrow\rangle-|\uparrow \downarrow, \sigma\rangle]
\end{aligned}
$$

and total energy

$$
E_{\text {total }}=3 \epsilon_{0}+U+\gamma
$$

Note that the solution has $\operatorname{spin} \sigma(1 / 2)$, but it is doubly degenerate.
$N=4$

Only the trivial solution

$$
E_{\text {total }}=4 \epsilon_{0}+2 U, \quad|\psi\rangle=|\uparrow \downarrow, \uparrow \downarrow\rangle
$$

Let us summarize the spectrum found

N	spectrum	
0	0	
1	$\epsilon_{0}+\gamma$	$\times 2$
	$\epsilon_{0}-\gamma$	$\times 2$
2	$2 \epsilon_{0}+\frac{U}{2}-\frac{\sqrt{U^{2}+16 \gamma^{2}}}{2}$	
	$2 \epsilon_{0}+\frac{U}{2}+\frac{\sqrt{U^{2}+16 \gamma^{2}}}{2}$	
	$2 \epsilon_{0}$	
	$2 \epsilon_{0}+U$	
	$2 \epsilon_{0}$	
	$2 \epsilon_{0}$	
3	$3 \epsilon_{0}+U+\gamma$	$\times 2$
	$3 \epsilon_{0}+U-\gamma$	$\times 2$
4	$4 \epsilon_{0}+2 U$	

How complicate can it get?

In general the wave-function need to be constructed over the basis defined by

$$
\begin{equation*}
\left|\Psi_{\kappa}\right\rangle=\left(\Pi_{i}^{N} \hat{c}_{i \sigma}^{\dagger}\right)|0\rangle, \tag{1}
\end{equation*}
$$

The matrix elements of H_{U} are

$$
\begin{equation*}
H_{i j}=\left\langle\Psi_{i}\right| H_{\mathrm{U}}\left|\Psi_{j}\right\rangle . \tag{2}
\end{equation*}
$$

For a L-sites and n_{\uparrow} and n_{\downarrow} electrons the number of basis function is

$$
\begin{equation*}
\kappa=\binom{L}{n_{\uparrow}} \cdot\binom{L}{n_{\downarrow}}, \quad \text { where, } \quad\binom{m}{n}=\frac{m!}{n!(m-n)!} . \tag{3}
\end{equation*}
$$

The scaling is terrible!!

L	n_{\uparrow}	n_{\downarrow}	Hilbert Space dimension
2	1	1	4
4	2	2	36
6	3	3	400
8	4	4	4,900
10	5	5	63,504
12	6	6	853,776
14	7	7	$11,778,624$
16	8	8	$165,636,900$
18	9	9	$2,363,904,400$
20	10	10	$34,134,779,536$

System	L	N	Hilbert Space	Time	Memory
Na_{2}	2	2	4	$1 \mu \mathrm{sec}$	128 b
Na_{6}	6	6	400	1 sec	1.2 Mb
Na_{10}	10	10	63,504	46 days	3.2 Gb
Na_{12}	12	12	853,776	308 years	43 Gb

