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PY4T01l Condensed Matter Theory: Lecture 15

Introducing electron-electron interaction

Let us go back to the Hy molecule and re-write H as (second
quantization formalism)

2
Z vy {0162 + cgcl}

The operators ¢, and CL are defined as

CV‘OV> =0 Cl’OV> = |1V>
c|1,) =0,) 1,y =0

c e}
‘ "y '
: 10) 1)
N’ N\
C, c,

A particular electronic configuration of the Hy molecule is
written in terms of the vectors

la1, ) where «a, =0,1
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H acts as following:

1. The first term “counts”’ electrons

CJ{C1|0417042> = ni|ag, az) = ag]ag, ag)

2. The second term “transfers’ electrons

6102‘017 12> — |117 02>

The problem can be then solved as usual.

1. Take a generic wave-function written on this “new” basis

1Y) = 1|11, 02) + 12|01, 1)

2. Expand the Schrodinger equation

2
HIw) = e0 3 cleuy) )+ |eles + cher | [v) = Ely)

2
€0 Z CZCV|¢> = €0W>
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v [CICQ + 0201} (¥1]11, 02) +92[01, 12)) =
=y (¢1|01, 12> + ¢2|117 02>)

3. Project over (a1, as| by using
<Oél, &2|61762> — 5041,ﬁ15042,ﬁ2

to obtain
€1 + Y2 = By

Y1 + €02 = Eho

(o 2)(e)-=(0)

5. We obtain the known solutions

4. Solve

1
Eyond =€+,  |Ybond) = NG |11, 02) 4+ {01, 12)]

1
Eanti = €0 — 7,  [Yanti) = 7 |11,02) — {01, 12)]
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Note:

The action of the operators ¢, and cL is defined by their
algebra given by the anti-commutation rules:

{CL, Ci} — {C,ua CV} =0 {Cua CIT/} — 5,u,u

with
{A,B} = AB+ BA

It then follows

1. The eigenvalues of clc, are 0 or 1

G

,/c,/)2 = ci (c,/cT) Cy = c}: (1 — clc,,) Cy = c,tc,,

Levnyg) = ny|ny)
cley|ny n,|n, B
(C,T/CV)Q\?”LV> = n2|n,) } - =01
2. clc,,\n,,) = ny|n,) — clc,,(c,,\n,,)) = (1—ny)cy|ny)
with n, =1

3. cicylny> = ny|n,/> — CZCV(CZ‘TLV>) = (1—nu)Ci!nu>
with n, =0
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Second Quantization (very quick)

Let us go back to the time-dependent Schrodinger equation

RAVE

2m

ihW(r) =

This is an “equation of motion”, which can be derived from the
Lagrangian density
. 72
L =ihvTW — 2—va VU — U(r)¥w
m

If U is the dynamical variable the conjugate momentum is

T = (9_L — hUT
ow

The Hamiltonian density is given by
52
H=7¥— L= Q—WT VU + U
and the Hamiltonian is obtained by integrating

2v/2
H:/Hd3r:/\1ﬁ (—hv +U>\Ifd3r
2m
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Second quantization consists in making ¥ and UT
operators (quantum fields) satisfying the following anti-
commutation relations (for fermions)

{T(r), ¥7(x")} = é(r — 1)
{07(r), ¥T(r')} = {¥(r), 2(x")} = 0

This is due to Jordan and Wigner (1928). Particles satisfying
the anticommutation rules are Fermions.

Now the operators ¢!, and ¢, can be introduced. Expand the
wave function over a convenient basis. For a chain of H atom
if ¢, (r) is the 1s orbital located at r — R,

U(r) = e, (r)

v

Uir) =) clou(r)

Finally from the anticommutation relations for the fields
(integrating in r):

{CLJ Ci} — {C,lM CV} =0 {C,Lw Cl} — 5u,y
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What about the Hamiltonian?

H = /qﬁ< hV U>\11d3r
H = Z [/ ¢u(r < h" v U) ¢, (1) d3r] CLCV

H = Z HWCLC,/
v

where H ), is the Hamiltonian matrix (as derived from the
tight-binding method)

(For more details see: G.D. Mahan, Many-Particle Physics,
Kluwer Academic)
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Many-particle operators

The Coulomb electron-electron interaction depends on the
position of two electrons

1 L :
SOWIEIE D W

T JF

In second quantization this leads to the operator

Z Vi€ v szcylc’/j

Vz ViVl

with

Vi, vivgpy, — /dSI"L/dgrj Do, I’Z)va (I'Z)l gbl/k(rj)qbl/z(rj)

il

i) V)

Vil

WiV
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The Hubbard model for H,

Consider the Hubbard Hamiltonian for Hs

HU — €0 Z ﬁMU + g Z(CIJCQU + C;acla) + U Z ﬁlJJT,ﬁ’IJJl

po o v
where

1. CLJ

creates an electron on the H atom at R, with spin 0 =T, |

2. Cuo

destroys an electron on the H atom at R, with spin 0 =T, |

3. €02 g Pouo + 7 2o (ClyC20 + hycio)

is the standard (non-interacting tight-binding Hamiltonian
for H2)

4. U ZM Mt T

is the on-site Coulomb repulsion
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Consider the case of the H atom. Then

HU :EOZﬁU+UﬁTﬁl
o

Stefano Sanvito

U=0 U=0
No. e | W>-
0 0> 0 0
1>
1 > € €
2 11] > 2€, 2€,+U

For interacting system the spectrum depends on the

number of electrons

— Typeset by Foil TEX —

10



PY4TO01 Condensed Matter Theory: Lecture 15

Solving the Hubbard model for H

Solve for different N =n; +n|
N=0

Only the trivial solution

N=1

The wave-function can be written as

1Y) = 1| T,0) +2[0, 1)

or

[¥) = 1| |,0) + 2|0, ])

where
|07 O> — CJ{U‘O, 0>

‘07 0> — C£a|07 O>

Stefano Sanvito

this is completely equivalent to the case done at

the very beginning (note that U} 7fy1fyfo,0)

U, futin]0,0) = 0)
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The Hamiltonian matrix then is

(5 o))"

with solutions

(&)

1
Ebond = €0 T s |¢bond> 7 HU O> + |O 0>]
Eanti = €0 — 7, |¢anti> — 7 HU O> ‘07 0>]
and total energy

Etotal = €p + Y

Note that the solution has spin ¢ (1/2), but it is doubly
degenerate.
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N=2

There are six possible electronic configurations (states)
1 |1) = 1,1) = clcl [0,0)
2. 12) = | 1. 1) = ¢],¢},10,0)
3. 13) =1 11,0) = ¢} ,¢};10,0)
4. 14) =10,11) = c},c},10,0)
5.15) = | 1.1) = ¢]4¢},10,0)
6. 16) = 1,1) =clch 0,0)

Note that for |1), [2), |3), |4), ny =n| =1, i.e. they are
spin singlet. Instead |5), |6) are spin triplet, i.e. n, = 2. Since
there is no term in the Hamiltonian which flips the spin there
are no matrix element between {|1),|2),|3),|4)} and either |5)
or [6). Now calculate the energy.

Triplets
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and
Etotal — 26O

Singlets

The wave-function is then written on the {|1),2),|3),[4)}
basis set

) = ¥1|1) + 12]2) + ¥3(3) + al4)
again one writes
Hyly) = Ely)

and project over |j) (j = 1,2,3,4)

This finally gives the matrix equation

2¢g O 8 8 ) Yn Yn

0  2¢ 8 8 VY2 | _ I (0

vy v 26+U 0 Y3 (0F
LYY 0 2¢0 +U ) \ s (o

The solutions are (eigenvalues and eigenvectors)

U U2 + 16~2
81:260—|—§—\/ —2'_ B
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1 .
Y1) = NG {I1) +[2)} cos 0 + {3) + [4)} sin 6]

U U2 + 162
52:2€0+§+\/ 9 i

1 :
[92) = NG [—{1) +12)}sin€ + {[3) + [4)} cos 0]

€3 — 260
1
[3) = \ﬁ(m —[2))
Eq4 = 260 +U
) = —=(13) — |4)),

V2

h
where 4

U++U2+167>
The ground state energy is therefore the one given by Fiota =
1.

tan f =
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Note that:

1. For v =0 (two isolated H atoms)

=2, 1) = %uw 12))
=20+ U, o) = %<|3>+\4>>
e3 =2, |s) = %<|1>—|2>>
o= 20+ U, |ia) = %<|3>—\4>>,

2. For U = 0 (non-interacting)

e1 = 2(e0 — ), !¢1>—\7(!1>+|2> 3) = 14))

2= 2co+7), o) = (11) + 2) +13) +14)
=20, [¥e) = (1)~ I2)
co=20, Y0 = —=(13) - 19),
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Note also that: One does not necessarily need to separate
singlet and triplet. The full basis can be used:

) = P1[1) + 1b2|2) + 1P3]3) + al4) + 5]5) + 6|6)

and the Hamiltonian matrix becomes

((2¢9 0 g Y 0 0 ) (% \ (%
0 2e¢o g Y 0 0 P2
v v 2e+U 0 0 0 Y3 | 5
vy 0 200+ U 0 0 Py
0 0 0 0 260 0 ¢5
000 0 0 20 ) \ws/) \ w

N=3

The wave-function can be written as

or
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where
o, 11) = chiTcéllo 0)
[ Tl,0) = CzaC1TC1¢|O 0)

this is similar to the NV = 1 case (UZMﬁMﬁM”a,N} —
Ulo, 1))

The Hamiltonian matrix then is

(3€0+U 8l )(%):E(%)
8 3eo +U () (0

with solutions

Ebond = 3¢p + U + s ‘¢bond> “O- Tl> + ‘ Tlv >]

%\

Eanti — 3EO +U — s ‘wanti> — HU Tl> T | T\La >]

Sl

and total energy

Etotal — 3'50 +U + Y

Note that the solution has spin ¢ (1/2), but it is doubly

degenerate.
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N=4

Only the trivial solution

Eiotal = 4eg + 2U, |¢> — ‘ T, Tl>

Let us summarize the spectrum found

N  spectrum

0 O
1 e+ X 2
€0 — 7Y X 2
U /U24+16~2
2 260 + 5 5
U, VU?+16+2
260
260 + U
260
260

3 3e+U+~n X 2
360—|—U—’y X 2
4 460—|—2U
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How complicate can it get?

In general the wave-function need to be constructed over the
basis defined by

0. = (I}'¢],)]0), (1)

The matrix elements of Hy are

H;; = (V;|Hy|¥;). (2)

For a L-sites and n4 and n| electrons the number of basis
function is

(O e ()

The scaling is terrible!!
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L ny mny || Hilbert Space dimension

2 1 1 4

4 2 2 36

6 3 3 400

8 4 4 4,900

10 5 5 63,504

12 6 6 853,776

14 7 7 11,778,624

16 8 8 165,636,900

18 9 9 2,363,904,400

20 10 10 34,134,779,536
System L N || Hilbert Space Time Memory
Nas 2 2 4 1 pusec 128b
Nag §) §) 400 1 sec 1.2Mb
Na;;, 10 10 63,504 46 days 3.2Gb
Na;, 12 12 853,776 308 years 43Gb
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