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PY4T01 Condensed Matter Theory: Lecture 13

Fixing the Graphine band structure: The σ band

We have to consider the forgotten s, px and py orbitals.
However using those orbitals is not terribly convenient for our
problem !!
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The problem is that the orbitals are not oriented along the
bond axis
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Consider for example the case of s and p orbitals
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γ = (spσ) cos θ

We want to get ride of the explicit angular dependence −→
we use orbitals that are oriented along the bonds.
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These are called hybrid orbitals.
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sp hybrids

The idea is to construct a new state from a linear
combination of atomic states ON THE SAME ATOM.

|α〉 =
∑
n

an|βn〉

In our case (graphine) we can use s, px and py −→ we form
an sp hybrid.

The construction of hybrid orbitals is based on two rules:

1. Principle of maximum overlap: Bonding is maximized when
the extent to which orbitals on adjacent sites overlap spatially
is maximized.
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2. Principle of orthogonality: The hybrid orbitals at a given
atomic center should be orthogonal.
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This is not a physical requirement but makes the contribution
to the charge density separable.

Suppose ψ(~r) = c1h1(~r) + c2h2(~r), then the total charge:∫
ψ∗(~r)ψ(~r)d~r = |c1|2

∫
|h1(~r)|2d~r + |c2|2

∫
|h2(~r)|2d~r+

c∗1c2

∫
h∗1(~r)h2(~r)d~r + c∗2c1

∫
h∗2(~r)h1(~r)d~r

If the hybrid orbitals are orthonormal this reduces simply to
|c1|2 + |c2|2.

Construct hybrid orbitals

Example: Suppose I want a p orbital in the z = 0 plane at
an angle θ to the x-axis

y
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θ
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This is simply

|h〉 = cos θ|px〉+ sin θ|py〉

sp2 hybrid orbitals

These are obtained by mixing |s〉, |px〉 and |py〉

|h1〉 = 1√
3

(
|s〉+

√
2|px〉

)
|h2〉 = 1√

3

(
|s〉 − 1√

2
|px〉+

√
3
2|py〉

)
|h3〉 = 1√

3

(
|s〉 − 1√

2
|px〉 −

√
3
2|py〉

)

Note that for orbitals on the same atom:

〈hi|hj〉 = δij

The sp2 orbitals are at 120o to each other.
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It is energetically convenient to form these hybrids ?

The energy of one of the sp2 hybrid is:

εh = 〈hi|H|hi〉 = (εs + 2εp)/3

I want to populate these three orbitals with 3 electrons:

Etot = 3εh = εs + 2εp

However in atomic carbon is 2s22p1+2p1z

Etot = 2εs + εp
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This means that to populate the sp2 orbital I have to spend
a promotion energy:

Epro = εp − εs

This is going to happen only if we gain energy in forming
the bond:

Ebond < Epro
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Calculate now the remaining bands

The band equation is always the same:

E(~k)A
~k
n′ =

∑
~R

6∑
n=1

ei
~k·(~R−~R′)A

~k
n〈~R′ n′|H|~R n〉

but now we have 6 degrees of freedom in the cell !!!

a 2

−a  2

−a   2+a   1

−a   1a 2

a 1

a 2
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Note however that there are only four type of bond.

β1

β2

β3

β4

Are the respective matrix elements all large ?

Consider for instance β1. This is simply:

β1 = 〈h1|H|h1〉 =
1

3

[
〈s|+

√
2〈px|

]
|H|

[
|s〉 −

√
2|px〉

]
=

=
1

3

[
ssσ − 2

√
2 spσ − 2ppσ

]
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In the same way one can show:

β2 =
1

3

[
ssσ +

√
2 spσ − 1

2
ppσ − 3

2
ppπ

]
β3 =

1

3

[
ssσ −

(√
2

2
+
√
2

)
spσ − ppσ

]

β4 =
1

3

[
ssσ +

√
2 spσ − 1

2
ppσ +

3

2
ppπ

]
The point is that the integral ssσ, spσ ... are known. In

particular we have the ratios (Harrison)

(ssσ) : (spσ) : (ppσ) : (ppπ) = −1.4 : 1.27 : 1.28 : −0.67

This means that for graphine:

|β1| > |β3| � |β2| ∼ |β4|
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Construct now the band equation:

On-site matrix:

+

+

+

+

+

+

1 2
4

63

5

H0 =


εh β1 0 β3 0 β3
β1 εh β3 0 β3 0
0 β3 εh β2 0 β4
β3 0 β2 εh β4 0
0 β3 0 β4 εh β2
β3 0 β4 0 β2 εh



In a similar way one can construct the matrices that connect
the unit cell with the other cells.
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H1(~k) =


0 0 0 0 0 0
β2 0 β3 0 β4 0
0 0 0 0 0 0
β3 0 β1 0 β3 0
0 0 0 0 0 0
β4 0 β3 0 β2 0

 ei
~k·~a2

H2(~k) =


0 0 0 0 0 0
β2 0 β4 0 β3 0
0 0 0 0 0 0
β4 0 β2 0 β3 0
0 0 0 0 0 0
β3 0 β3 0 β1 0

 ei
~k·(~a2−~a1)

Finally one diagonalize the resulting 6 × 6 matrix to find
E( ~K)

H0 +H1(~k) +H2(~k) +H†1(~k) +H
†
2(
~k) = E(~k)I
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The Fermi Surface of graphine

First construct the reciprocal lattice. This is given by the
relation

ei
~G·~T

where ~T is the translation vector of the lattice. In this case:

~T →


~a1 = a0 ŷ

~a2 = a0

(√
3
2 x̂+ 1

2ŷ
)

~G→


~b1 =

2π
a0

(
k̂y − 1√

3
k̂x

)
~b2 =

2π
a0

(
2√
3
k̂x

)
The Brillouin zone is then

k x

k y

b1

b2

M
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Γ
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And the Fermi surface is simply .... 6 points !!!
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