PY4T01 Condensed Matter Theory: Lecture 12

Band Structure of Graphene: Corrections at E_{F}

Remember the last result:

$$
E(\vec{k})=\epsilon_{p} \pm \gamma_{p p \pi} \sqrt{f(\vec{k}) f(\vec{k})^{*}}=\epsilon_{p} \pm \gamma_{p p \pi} \sqrt{|f(\vec{k})|^{2}}
$$

with

$$
f(\vec{k})=1+2 \mathrm{e}^{-i k_{x} \frac{\sqrt{3}}{2} a_{0}} \cos \left(\frac{k_{y}}{2} a_{0}\right)
$$

This gives

This is somehow unsatisfactory since:

1. The π bands are symmetric with respect to $E=\epsilon_{p}$
2. One band is completely missed

Fixing the π band
The approximation we have to give up in this case is that of orthogonality of the basis set:

$$
\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R} n\right\rangle=\left\{\begin{array}{cc}
1 & \text { if }\left(\vec{R}^{\prime} n^{\prime}\right)=(\vec{R} n) \\
S & \text { if }\left(\vec{R}^{\prime} n^{\prime}\right),(\vec{R} n) \mathrm{nn} \\
0 & \text { elsewhere }
\end{array}\right.
$$

we can still use the "molecular state"

$$
\left|\psi_{\vec{k}}\right\rangle=\frac{1}{N^{1 / 2}} \sum_{\vec{R}} \sum_{n=1}^{2} \mathrm{e}^{i \vec{k} \cdot \vec{R}} A_{n}^{\vec{k}}|\vec{R} n\rangle
$$

to solve the Schrödinger equation $H\left|\psi_{\vec{k}}\right\rangle=E\left|\psi_{\vec{k}}\right\rangle$

$$
\sum_{\vec{R}} \sum_{n=1}^{2} A_{n}^{\vec{k}} \mathrm{e}^{i \vec{k} \cdot \vec{R}} H|\vec{R} n\rangle=E(\vec{k}) \sum_{\vec{R}} \sum_{n=1}^{2} A_{n}^{\vec{k}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}|\vec{R} n\rangle
$$

But now when we multiply by $\left\langle\vec{R}^{\prime} n^{\prime}\right\rangle$, we obtain
$\sum_{\vec{R}} \sum_{n=1}^{2} A_{n}^{\vec{k}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}\left\langle\vec{R}^{\prime} n^{\prime}\right| H|\vec{R} n\rangle=E(\vec{k}) \sum_{\vec{R}} \sum_{n=1}^{2} A_{n}^{\vec{k}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R} n\right\rangle$

This is analogous to the case of the H_{2} molecule. However the overlap matrix \mathcal{S} now has some phases (as well as the Hamiltonian matrix elements).

On-site terms: overlap within the primitive cell

$$
\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R}^{\prime} n\right\rangle=\left(\begin{array}{cc}
1 & S \\
S & 1
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot \vec{R}^{\prime}}$
Off-diagonal terms: overlap with other cells
Each cell has four nearest neighbor cells

1. Cell \vec{a}_{2}

$$
\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R}^{\prime}+\vec{a}_{2} n\right\rangle=\left(\begin{array}{ll}
0 & 0 \\
S & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}+\vec{a}_{2}\right)}$
2. Cell $\vec{a}_{2}-\vec{a}_{1}$

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime}+\vec{a}_{2}-\vec{a}_{1} n\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
S & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}+\vec{a}_{2}-\vec{a}_{1}\right)}$
3. Cell $-\vec{a}_{2}$

$$
\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R}^{\prime}-\vec{a}_{2} n\right\rangle=\left(\begin{array}{cc}
0 & S \\
0 & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}-\vec{a}_{2}\right)}$
4. Cell $-\vec{a}_{2}+\vec{a}_{1}$

$$
\left\langle\vec{R}^{\prime} n^{\prime} \mid \vec{R}^{\prime}-\vec{a}_{2}+\vec{a}_{1} n\right\rangle=\left(\begin{array}{cc}
0 & S \\
0 & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}-\vec{a}_{2}+\vec{a}_{1}\right)}$

Now let us put all together $(\mathcal{H}-E \mathcal{S}) \Psi_{\vec{k}}$:

$$
\left(\begin{array}{cc}
\epsilon_{p} & \gamma_{p p \pi} f(\vec{k}) \\
\gamma_{p p \pi} f(\vec{k})^{*} & \epsilon_{p}
\end{array}\right) \Psi_{\vec{k}}=E(\vec{k})\left(\begin{array}{cc}
1 & S f(\vec{k}) \\
S f(\vec{k})^{*} & 1
\end{array}\right) \Psi_{\vec{k}}
$$

It is easy to see that the solutions are:

$$
E(\vec{k})=\frac{\epsilon_{p} \pm \gamma_{p p \pi} \sqrt{|f(\vec{k})|^{2}}}{1 \pm S \sqrt{|f(\vec{k})|^{2}}}
$$

