PY4T01 Condensed Matter Theory: Lecture 11

The Band Structure of Graphene

Consider again Carbon. Which atomic orbitals are appropriate to describe solid state C ?

- Atomic Carbon: $1 s^{2} 2 s^{2} 2 p^{2}$
- Solid State: $1 s^{2} 2 s^{1} 2 p^{3}$

In solid state C appears in two different states:

Diamond:

Each Carbon atom has 4 nearest neighbors forming a 109° angle \longrightarrow All s, p_{x}, p_{y}, and p_{z} must be equivalent.

Graphite:

Each Carbon atom has 3 nearest neighbors in the $x-y$ plane forming a 120° angle.

Note that in graphite:

- The C-C separation is $1.42 \AA$
- The inter-plane separation is $3.37 \AA$

Clearly s, p_{x}, p_{y}, must be treated differently then p_{z}.

Note:

We had already one example of identical atomic orbitals that contribute in a different way in solid state: the C chain

Graphene

In analogy with the linear C-chain, we guess that the relevant orbitals at the Fermi level are the p_{z}. This means that our "molecular state" $\left|\psi_{k}\right\rangle$ can be written as:

$$
\left|\psi_{\vec{k}}\right\rangle=\frac{1}{N^{1 / 2}} \sum_{\vec{R}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}|\vec{R}\rangle
$$

$|\vec{R}\rangle$ represents a p_{z} orbital at the atomic site \vec{R}.
Let us define the geometry of the problem:

where

$$
\left\{\begin{array}{l}
\vec{a}_{1}=a_{0} \hat{y} \\
\vec{a}_{2}=a_{0}\left(\frac{\sqrt{3}}{2} \hat{x}+\frac{1}{2} \hat{y}\right)
\end{array}\right.
$$

All the atoms of the crystal can be obtained as follows:

1. We need to consider two atoms in the cell (black and green). This is called the primitive cell
2. All the other atoms can be obtained from the primitive cell with a translation $\vec{T}=\vec{a}_{1} m+\vec{a}_{2} n$ (m and n are integer).
\vec{a}_{1} and \vec{a}_{2} are called primitive lattice vectors

Since we have two atoms in the cell a better choice of basis is $|\vec{R} n\rangle$:

$$
\left|\psi_{\vec{k}}\right\rangle=\frac{1}{N^{1 / 2}} \sum_{\vec{R}} \sum_{n=1}^{2} \mathrm{e}^{i \vec{k} \cdot \vec{R}} A_{n}^{\vec{k}}|\vec{R} n\rangle
$$

where $|\vec{R} n\rangle$ represents an atom n ($n=1$ for green atoms, $n=2$ for black atoms) belonging to the cell located at \vec{R}. We assume an orthogonal basis set.
$\left|A_{n}^{\vec{k}}\right|^{2}$ is the probability to find an electron in the state $\left|\psi_{\vec{k}}\right\rangle$ on the atom n.

Then the energy $E(\vec{k})$ is given by (Bloch's Theorem)

$$
E(\vec{k}) A_{n^{\prime}}^{\vec{k}}=\sum_{\vec{R}} \sum_{n}^{2} \mathrm{e}^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)} A_{n}^{\vec{k}}\left\langle\vec{R}^{\prime} n^{\prime}\right| H|\vec{R} n\rangle
$$

Let us consider carefully the matrix elements:
Again we use the matrix notation for the amplitudes $A_{n}^{\vec{k}}$. We also consider only nearest neighbors interaction.

On-site energy: coupling with the primitive cell

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime} n\right\rangle=\left(\begin{array}{cc}
\epsilon_{p} & \gamma_{p p \pi} \\
\gamma_{p p \pi} & \epsilon_{p}
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}-\vec{R}^{\prime}\right)}=1$
Off-diagonal terms: coupling with other cells

Each cell has four nearest neighbor cells

a_{2}

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime}+\vec{a}_{2} n\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
\gamma_{p p \pi} & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}+\vec{a}_{2}-\vec{R}^{\prime}\right)}=\mathrm{e}^{i \vec{k} \cdot \vec{a}_{2}}$
2. Cell $\vec{a}_{2}-\vec{a}_{1}$

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime}+\vec{a}_{2}-\vec{a}_{1} n\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
\gamma_{p p \pi} & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}+\vec{a}_{2}-\vec{a}_{1}-\vec{R}^{\prime}\right)}=\mathrm{e}^{i \vec{k} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}$
3. Cell $-\vec{a}_{2}$

- Typeset by FoilTEX -

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime}-\vec{a}_{2} n\right\rangle=\left(\begin{array}{cc}
0 & \gamma_{p p \pi} \\
0 & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}-\vec{a}_{2}-\vec{R}^{\prime}\right)}=\mathrm{e}^{-i \vec{k} \cdot \vec{a}_{2}}$
4. Cell $-\vec{a}_{2}+\vec{a}_{1}$

$$
\left\langle\vec{R}^{\prime} n^{\prime}\right| H\left|\vec{R}^{\prime}-\vec{a}_{2}+\vec{a}_{1} n\right\rangle=\left(\begin{array}{cc}
0 & \gamma_{p p \pi} \\
0 & 0
\end{array}\right)
$$

The phase factor is $\mathrm{e}^{i \vec{k} \cdot\left(\vec{R}^{\prime}-\vec{a}_{2}+\vec{a}_{1}-\vec{R}^{\prime}\right)}=\mathrm{e}^{-i \vec{k} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}$

Now let us put all together:

$$
E(\vec{k}) \Psi_{\vec{k}}=\left(\begin{array}{cc}
\epsilon_{p} & \gamma_{p p \pi} f(\vec{k}) \\
\gamma_{p p \pi} f(\vec{k})^{*} & \epsilon_{p}
\end{array}\right) \Psi_{\vec{k}}
$$

where:

$$
\begin{gathered}
\Psi_{\vec{k}}=\binom{A_{1}^{\vec{k}}}{A_{2}^{\vec{k}}} \\
f(\vec{k})=1+\mathrm{e}^{-i \vec{k} \cdot \vec{a}_{2}}+\mathrm{e}^{-i \vec{k} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}=
\end{gathered}
$$

$$
=1+2 \mathrm{e}^{-i k_{x} \frac{\sqrt{3}}{2} a_{0}} \cos \left(\frac{k_{y}}{2} a_{0}\right)
$$

The eigenvalues are then given by

$$
\operatorname{det}\left(\begin{array}{cc}
\epsilon_{p}-E(\vec{k}) & \gamma_{p p \pi} f(\vec{k}) \\
\gamma_{p p \pi} f(\vec{k})^{*} & \epsilon_{p}-E(\vec{k})
\end{array}\right)=0
$$

which has solutions:

$$
E(\vec{k})=\epsilon_{p} \pm \gamma_{p p \pi} \sqrt{f(\vec{k}) f(\vec{k})^{*}}
$$

or explicitly

$$
E(\vec{k})=\epsilon_{p} \pm
$$

$\pm \gamma_{p p \pi} \sqrt{1+4 \cos ^{2}\left(\frac{k_{y} a_{0}}{2}\right)+4 \cos \left(\frac{k_{y} a_{0}}{2}\right) \cos \left(\frac{\sqrt{3}}{2} k_{x} a_{0}\right)}$

The band just described is called the π band. Moreover:

- π band with $E(\vec{k})<\epsilon_{p}$ is the bonding part of the band $\longrightarrow \pi$ band
- π band with $E(\vec{k})>\epsilon_{p}$ is the antibonding part of the band $\longrightarrow \pi^{*}$ band

