PY4T01 Condensed Matter Theory: Lecture 10

Bloch's Theorem in 2D and 3D

Our working hypothesis was:

$$
\psi_{j l}=A \mathrm{e}^{i k_{x} a_{x} j} \mathrm{e}^{i k_{y} a_{y} l}
$$

This is again a consequence of Bloch's Theorem. In 2D (or 3D) the theorem becomes:

$$
\psi_{\vec{k}}(\vec{r}+\vec{T})=\mathrm{e}^{i \vec{k} \cdot \vec{T}} \psi_{\vec{k}}(\vec{r}) \rightarrow\left\langle\vec{r}+\vec{T} \mid \psi_{\vec{k}}\right\rangle=\mathrm{e}^{i \vec{k} \cdot \vec{T}}\left\langle\vec{r} \mid \psi_{\vec{k}}\right\rangle
$$

- \vec{T} is one of the translational vectors of the lattice
- \vec{k} is called the wave vector

Let us apply the theorem to our "molecular state"

$$
\left|\psi_{\vec{k}}\right\rangle=\sum_{\vec{R}} c_{\vec{k}}(\vec{R})|\vec{R}\rangle
$$

- $|\vec{R}\rangle$ denotes the atomic state at \vec{R}

The molecular state at $\vec{r}+\vec{T}$ is

$$
\left\langle\vec{r}+\vec{T} \mid \psi_{\vec{k}}\right\rangle=\sum_{\vec{R}} c_{\vec{k}}(\vec{R})\langle\vec{r}+\vec{T} \mid \vec{R}\rangle=\sum_{\vec{R}} c_{\vec{k}}(\vec{R})\langle\vec{r} \mid \vec{R}-\vec{T}\rangle
$$

Using Bloch's theorem:

$$
\begin{gathered}
\left\langle\vec{r}+\vec{T} \mid \psi_{\vec{k}}\right\rangle=\mathrm{e}^{i \vec{k} \cdot \vec{T}}\left\langle\vec{r} \mid \psi_{\vec{k}}\right\rangle=\mathrm{e}^{i \vec{k} \cdot \vec{T}} \sum_{\vec{R}} c_{\vec{k}}(\vec{R})\langle\vec{r} \mid \vec{R}\rangle= \\
=\mathrm{e}^{i \vec{k} \cdot \vec{T}} \sum_{\vec{R}} c_{\vec{k}}(\vec{R}-\vec{T})\langle\vec{r} \mid \vec{R}-\vec{T}\rangle
\end{gathered}
$$

Comparing the coefficients for $\langle\vec{r} \mid \vec{R}-\vec{T}\rangle$ we find

$$
c_{\vec{k}}(\vec{R})=\mathrm{e}^{i \vec{k} \cdot \vec{T}} c_{\vec{k}}(\vec{R}-\vec{T})
$$

which is satisfied for

$$
c_{\vec{k}}(\vec{R})=A \mathrm{e}^{i \vec{k} \cdot \vec{R}}
$$

Then our molecular states are:

$$
\left|\psi_{\vec{k}}\right\rangle=\frac{1}{N^{1 / 2}} \sum_{\vec{R}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}|\vec{R}\rangle
$$

Calculate the band structure

Insert the Bloch state $\left|\psi_{\vec{k}}\right\rangle$ into the Schrödinger equation $H\left|\psi_{\vec{k}}\right\rangle=E\left|\psi_{\vec{k}}\right\rangle$

$$
\frac{1}{N^{1 / 2}} \sum_{\vec{R}} \mathrm{e}^{i \vec{k} \cdot \vec{R}} H|\vec{R}\rangle=\frac{E(\vec{k})}{N^{1 / 2}} \sum_{\vec{R}} \mathrm{e}^{i \vec{k} \cdot \vec{R}}|\vec{R}\rangle
$$

Now multiply to the left by $\left\langle\vec{R}^{\prime}\right|$

$$
E(\vec{k})=\sum_{\vec{R}} \mathrm{e}^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)}\left\langle\vec{R}^{\prime}\right| H|\vec{R}\rangle
$$

Example: Again the 2D H atom square lattice

Only five matrix elements are not zero:

$$
\begin{gathered}
\left\langle\vec{R}^{\prime}\right| H\left|\vec{R}^{\prime}\right\rangle=\epsilon_{0} \\
\left\langle\vec{R}^{\prime}\right| H\left|\vec{R}^{\prime}+\left(0, a_{y}\right)\right\rangle=\gamma_{y} \\
\left\langle\vec{R}^{\prime}\right| H\left|\vec{R}^{\prime}+\left(0,-a_{y}\right)\right\rangle=\gamma_{y} \\
\left\langle\vec{R}^{\prime}\right| H\left|\vec{R}^{\prime}+\left(a_{x}, 0\right)\right\rangle=\gamma_{x} \\
\left\langle\vec{R}^{\prime}\right| H\left|\vec{R}^{\prime}+\left(-a_{x}, 0\right)\right\rangle=\gamma_{x}
\end{gathered}
$$

and these give

$$
E(\vec{k})=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{x}\right)+2 \gamma_{y} \cos \left(k_{y} a_{y}\right)
$$

Reciprocal Lattice

Consider again the energy for a 2D H square lattice

$$
E(\vec{k})=\epsilon_{0}+2 \gamma_{x} \cos \left(k_{x} a_{x}\right)+2 \gamma_{y} \cos \left(k_{y} a_{y}\right)
$$

Two wave vectors \vec{k} and \vec{k}^{\prime} such that

$$
\vec{k}=\vec{k}^{\prime}+\vec{G} \quad \text { with } \quad \vec{G}=\left(\frac{2 \pi m}{a_{x}}, \frac{2 \pi n}{a_{y}}\right)
$$

give the same energy $E(\vec{k})$. Allowing m and n to take all integer values, \vec{G} generates another square lattice in k-space. This is the reciprocal lattice.

Note that:

$$
\left\langle\vec{r}+\vec{T} \mid \psi_{\vec{k}+\vec{G}}\right\rangle=\mathrm{e}^{i(\vec{k}+\vec{G}) \cdot \vec{T}}\left\langle\vec{r} \mid \psi_{\vec{k}+\vec{G}}\right\rangle=\mathrm{e}^{i \vec{k} \cdot \vec{T}}\left\langle\vec{r} \mid \psi_{\vec{k}+\vec{G}}\right\rangle
$$

This means that:

1. For any \vec{G} belonging to the reciprocal lattice we have

$$
\mathrm{e}^{i \vec{G} \cdot \vec{T}}=1
$$

2. $\left|\psi_{\vec{k}}\right\rangle$ and $\left|\psi_{\vec{k}+\vec{G}}\right\rangle$ have the same energy
3. $\left|\psi_{\vec{k}}\right\rangle$ and $\left|\psi_{\vec{k}+\vec{G}}\right\rangle$ transform in the same way following a lattice translation \vec{T}
4. Any vector in k-space lying outside the first Brillouin zone may be brought to lie within it by adding some reciprocal lattice vector. This is called the reduced zone scheme.

Motion of an electron in an electric field

What is the velocity of an electron in the state $\left|\psi_{\vec{k}}\right\rangle$?
Of course this is the expectation value of the operator \hat{p} / m

$$
\vec{v}_{\vec{k}}=\frac{1}{m}\left\langle\psi_{k}\right| \hat{\vec{p}}\left|\psi_{k}\right\rangle \quad \text { with } \quad \hat{\vec{p}}=\frac{h}{2 \pi i} \vec{\nabla}
$$

It is possible to demonstrate (see tutorial 3) that

$$
\vec{v}_{\vec{k}}=\frac{2 \pi}{h} \vec{\nabla}_{\vec{k}} E(\vec{k})
$$

Let us study the motion in an electric field $\vec{\xi}$
The work done by $\vec{\xi}$ for displacing an electron by $\vec{v}_{\vec{k}} \delta t$ is

$$
\delta w=-e \vec{\xi} \cdot \vec{v}_{\vec{k}} \delta t
$$

This corresponds to an energy change

Therefore we find

$$
-e \vec{\xi}=\frac{h}{2 \pi} \frac{\mathrm{~d} \vec{k}}{\mathrm{~d} t}
$$

$h \vec{k} / 2 \pi$ is called the crystal momentum of the electron \rightarrow it is the quantity connected to the equations of motion.

Consider the 1D case, then

$$
-e \xi=\frac{h}{2 \pi} \frac{\mathrm{~d} k}{\mathrm{~d} t}
$$

The solution is therefore

$$
k(t)=k_{0}-\frac{2 \pi e \xi}{h} t
$$

Since for the 1D case $E=\epsilon_{0}+2 \gamma \cos (k a)$, and

$$
v_{k}=-\frac{4 \pi \gamma a}{h} \sin (k a)
$$

we obtain

$$
v_{k}=-\frac{4 \pi \gamma a}{h} \sin \left(k_{0}-\frac{2 \pi e \xi}{h} t\right) a
$$

This means that an electron in an electric field oscillates backward and forward !!!

How can a current flow?

In practice the electron wave-vector does not change much since it is scattered by a lattice vibration.

Furthermore note that:

- States at $\pm k$ have opposite group velocities \rightarrow no current flow in absence of an electric field
- To have electron transport we need to break the balance between states with $+k$ and $-k$
\longrightarrow scattering is essential for electronic transport
- If all the states are filled \longrightarrow no transport
- If there are accessible states \longrightarrow YES, TRANSPORT
- The closest accessible states are those at the Fermi energy \rightarrow the Fermi Surface

