Publications


Articles: 2022023 2022 2021 2020 2019 2018 2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998
Books
Book Chapters
Proceedings

Articles

2024

[5] El Tayeb Bentria, Prathamesh Mahesh Shenai, Stefano Sanvito, Heesoo Park, Laurent Karim Bland, Nicholas Laycock and Fedwa El Mellouhi, Computational demystification of Iron Carbonyls formation under gas reforming conditions, npj material degradation 8, 19 (2024).

[4] Simeon A. Abolade, Shittu B. Akinpelu, David O. Obada, Syam Kumar, Fadwa El-Mellouhi, Stefano Sanvito and Akinlolu Akande, Ab initio Study of Alkali-Metal-Based Bismuth Selenides (ABiSe2; A= K, Na) for Photovoltaic and Thermoelectric Applications, Phys. Rev. Materials 8, 015404 (2024)

[3]  Hugo Rossignol, Michail Minotakis, Matteo Cobelli and Stefano Sanvito, Machine-Learning- Assisted Construction of Ternary Convex Hull Diagrams, J. Chem. Inf. Model. (2024).

[2] Luke P. J. Gilligan, Matteo Cobelli, Valentin Taufour and Stefano Sanvito, A rule-free workflow for the automated generation of databases from scientific literature, npj Comp. Mater. 9, 222 (2024).

[1]  Cian Gabbett, Luke Doolan, Kevin Synnatschke, Laura Gambini, Emmet Coleman, Adam G. Kelly, Shixin Liu, Eoin Caffrey, Jose Munuera, Catriona Murphy, Stefano Sanvito, Lewys Jones and Jonathan N. Coleman, Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography, Nature Commun. 15, 278 (2024).

2023

[14] Yudi Wang, Haoyang Pan, Yuxuan Jiang, Jie Li, Dongying Lin, Shi Li, Yongfeng Wang, Stefano Sanvito and Shimin Hou, High-Performance Molecular Spin Filters Based on a Square-Planar Four-Coordinate Fe Complex and Covalent Pyrazine Anchoring Groups, J. Mater. Chem. C, (2023).

[13]  M. Minotakis, H. Rossignol, M. Cobelli and S. Sanvito, Machine-Learning Surrogate Model for Accelerating the Search of Stable Ternary Alloys, Phys. Rev. Materials 7, 093802 (2023).

[12]  Michelangelo Domina, Urvesh Patil, Matteo Cobelli and Stefano Sanvito, Cluster expansion constructed over Jacobi-Legendre polynomials for accurate force fields, Phys. Rev. B 108, 094102 (2023).

[11] R. Dong, A. Lunghi and S. Sanvito, Stiffness and atomic-scale friction in superlubricant MoS2 bilayers, J. Phys. Chem. Lett. 14, 6086-6091 (2023).

[10] Joshua Belot, Valentin Taufour, Stefano Sanvito and Gus Hart, Machine Learning Predictions of High-Curie-Temperature Materials, Appl. Phys. Lett. 123, 042405 (2023).

[9] Bruno Focassio, Michelangelo Domina, Urvesh Patil, Adalberto Fazzio and Stefano Sanvito, Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure calculations, npj Comp. Mater. 9, 87 (2023).

[8] Anita Halder, Sumanta Bhandary, David D. O’Regan, Stefano Sanvito and Andrea Droghetti, A theoretical perspective on the modification of the magnetocrystalline anisotropy at molecule-cobalt interfaces, Phys. Rev. Mater. 7, 064409 (2023).

[7] Yanhui Zhang, Yunkai Zhou, Limin Wang and Stefano Sanvito, Metastable high entropy alloy of TiZrHfTa with glass-like characteristics at low temperatures, Acta Materialia 255, 119031 (2023).

[6] Lei Zhang, Cheng Tang, Stefano Sanvito and Aijun Du, Highly Degenerate 2D Ferroelectricity in Pore Decorated Covalent/Metal Organic Frameworks, Mater. Horiz. 10, 2599-2608 (2023).

[5] Gokaran Shukla, Avijeet Ray, Hasan M. Abdullah, Shubham Tyagi, Aurelien Manchon, Stefano Sanvito and Udo Schwingenschlögl, ZnSe and ZnTe as tunnel barriers for Fe-based spin valves, Phys. Chem. Chem. Phys. 25, 13533 (2023).

[4] Yuxuan Jiang, Shi Li, Yudi Wang, Haoyang Pan, Yongfeng Wang, Stefano Sanvito and Shimin Hou, Does a Blatter radical retain its open-shell character when incorporated into gold-molecule-gold junctions? J. Phys. Chem. C 127, 9268 (2023).

[3]  Laura Gambini, Tiarnan Mullarkey, Lewys Jones and Stefano Sanvito, Machine-learning approach for quantified resolvability enhancement of low-dose STEM data, Mach. Learn.: Sci. Technol. 4, 015025 (2023).

[2]  Cheng Tang, Lei Zhang, Stefano Sanvito and Aijun Du, Enabling the Room-Temperature Triferroic Coupling in Dual Transition Metal Dichalcogenide Monolayers via Electronic Asymmetry, J. Am. Chem. Soc. 4, 2485-2491 (2023).

[1]  Neha Tyagi, Neeraj K. Jaiswal, Kamal K. Jha, Pankaj Srivastava and Stefano Sanvito, Designing Nanoscale Organic Interconnects via sp2/sp3 Fluorine Functionalized Armchair Graphene Nanoribbons, Mater. Sci. Eng. B 288, 116153 (2023)

2022

[10] Yudi Wang, Haoying Pan, Dongying Lin, Shi Li, Yongfeng Wang, Stefano Sanvito and Shimin Hou, Robust covalent pyrazine anchors forming highly conductive and polarity-tunable molecular junctions with carbon electrodes, Phys. Chem. Chem. Phys. 24, 21337-21347 (2022).

[9]  A. Lunghi and S. Sanvito, Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations, Nature Reviews Chemistry 6, 761 (2022).

[8]  Matteo Cobelli, Paddy Cahalane and Stefano Sanvito, Inversion of the chemical environment representations, Phys. Rev. B 106, 035402 (2022).

[7]  James Nelson, Luuk Coopmans, Graham Kells and Stefano Sanvito, Data-Driven Time Propagation of Quantum Systems with Neural Networks, Phys. Rev. B 106, 045402 (2022).

[6]  Yuxuan Jiang, Yongfeng Wang, Stefano Sanvito and Shimin Hou, Density functional study on the deprotonation and binding mechanism of imidazole on gold electrodes in an aqueous environment, J. Phys. Chem. C 126, 12424 (2022).

[5]  Michelangelo Domina, Matteo Cobelli and Stefano Sanvito, A spectral-neighbour representation for vector fields: machine-learning potentials including spin, Phys. Rev. B 105, 214439 (2022).

[4]  Gokaran Shukla, Stefano Sanvito and Geunsik Lee, Fe- and Co-based magnetic tunnel junctions with AlN and ZnO spacers, Phys. Rev. B 105, 184427 (2022).

[3] Jacopo Simoni and Stefano Sanvito, Conservation of angular momentum in ultrafast spin dynamics, Phys. Rev. B 105, 104437 (2022).

[2] Seongcheol Noh, Stefano Sanvito and Mincheol Shin, DFT-NEGF simulation study of Co2FeAl-MgO-Co2FeAl magnetic tunnel junctions under biaxial strain, IEEE Trans. Magn. 58, 7000406 (2022).

[1] Heesoo Park, Syam Kumar R., Akinlolu Akande, Stefano Sanvito and Fedwa El-Mellouhi, The rise of Nb-, Ta-, and Bi-based oxides/chalcogenides for photocatalytic applications, Int. J. Hydrog. Energy 47, 3358 (2022)

2021

[17] Peng Jiang, Lili Kang, Yanling Li, Xiaohong Zheng, Zhi Zeng and Stefano Sanvito, Prediction of a novel 2D Janus ferrovalley material LaBrI, Phys. Rev. B 104, 035430 (2021).

[16]  Lei Zhang, Cheng Tang, Stefano Sanvito and Aijun Du, Purely One-dimensional Ferro-electricity and Antiferroelectricity from Van der Waals Crystals: The Case of Niobium Oxide Trihalides, npj Comp. Mater. 7, 1 (2021).

[15]  Dongying Lin, Zhihao Zhao, Haoyang Pan, Shi Li, Yongfeng Wang, Dong Wang, Stefano Sanvito and Shimin Hou, Using weakly supervised deep learning to classify and segment single-molecule break-junction conductance traces, ChemPhysChem 22, 2107 (2021).

[14]  Emanuele Bosoni and Stefano Sanvito, Complex band structure with non-orthogonal basis set: analytical properties and implementation in the SIESTA code, J. Phys.: Condens. Matter. 34, 105501 (2021).

[13]  Lei Zhang, Cheng Tang, Stefano Sanvito, Yuantong Gu and Aijun Du, Hydrogen-Intercalated 2D Magnetic Bilayer: Controlled Magnetic Phase Transition and Half-Metallicity via Ferro-electric Switching, ACS Appl. Mater. Interfaces 14, 1800 (2021).

[12]  Cheng Tang, Lei Zhang, Yalong Jiao, Chunmei Zhang, Stefano Sanvito and Aijun Du, First- principles Prediction of Polar Half-Metallicity and Out-of-Plane Piezoelectricity in Two-Dimensional Cobalt Selenide, J. Mater. Chem. C 9, 12046 (2021).

[11]  Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Stefano Sanvito and Aijun Du, Interfacing 2D VS2 with Janus MoSSe: Antiferromagnetic electric polarization and charge transfer driven Half-metallicity, Appl. Surf. Sci. 570, 151129 (2021).

[10]  R. Tiwari, J. Nelson, C. Xu and S. Sanvito, Reactivity of transition-metal alloys to oxygen and sulphur, Phys. Rev. Materials 5, 083801 (2021).

[9]  Shi Li, Yuxuan Jiang, Yongfeng Wang, Stefano Sanvito and Shimin Hou, In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions, J. Phys. Chem. Lett. 12, 7596 (2021).

[8]  Yanhui Zhang and Stefano Sanvito, Atomistic simulations of surface reactions in ultra-high- temperature ceramics: O2, H2O and CO adsorption and dissociation on ZrB2 (0001) surfaces, App. Surf. Sci. 566, 150622 (2021).

[7] A. Jaafar, I. Rungger, S. Sanvito and M. Alouani, Effect of a ferromagnetic STM cobalt tip on a single Co-phthalocyanine molecule adsorbed on a ferromagnetic substrate, Physics Open 9, 100088 (2021).

[6]  Rémi Khatib, Ashwinee Kumar, Stefano Sanvito, Marialore Sulpizi and Clotilde S. Cucinotta, The nanoscale structure of the Pt-water double layer under bias revealed, Electrochimica Acta 391, 138875 (2021).

[5] James Nelson, Rajarshi Tiwari and Stefano Sanvito, Machine-learning semilocal density functional theory for many-body lattice models at zero and finite temperature, Phys. Rev. B 103, 245111 (2021).

[4]  Shi Li, Yudi Wang, Yongfeng Wang, Stefano Sanvito and Shimin Hou, High-performance spin filters based on 1,2,4,5-tetrahydroxybenzene molecules attached to bulk nickel electrodes, J. Phys. Chem. C 125, 6945 (2021).

[3]  Maria Stamenova, Plamen Stamenov, Farzad Mahfouzi, Qilong Sun, Nicholas Kioussis and Stefano Sanvito, Spin transfer torque in Mn3Ga-based ferrimagnetic tunnel junctions from first principles, Phys. Rev. B 103, 094403 (2021).

[2]  Rui Dong, Alain Jacob, Stéphane Bourdais and Stefano Sanvito, High-throughput bandstructure simulations of van der Waals hetero-bilayers formed by 1T and 2H monolayers, npj 2D Mat. Appl. 5, 26 (2021).

[1] Cheng Tang, Kostya (Ken) Ostrikov, Stefano Sanvito, and Aijun Du, Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer, Nanoscale Horiz. 6, 43 (2021)

2020

[18] Elena Yu Vedmedenko, Roland Kenji Kawakami, Denis D. Sheka, Pietro Gambardella, Andrei Kirilyuk, Atsufumi Hirohata, Christian Binek, Oksana Chubykalo-Fesenko, Stefano Sanvito, Brian J. Kirby, Julie Grollier, Karin Everschor-Sitte, Tobias Kampfrath, Chun Yeol You and Andreas Berger, The 2020 magnetism roadmap, J. Phys. D: Appl. Phys. 45, 453001 (2020).

[17] Heesoo Park, Raghvendra Mall, Adnan Ali, Stefano Sanvito, Halima Bensmail and Fedwa El-Mellouhi, Importance of structural deformation features in the prediction of hybrid perovskite bandgaps, Comp. Mat. Sci. 184, 109858 (2020).

[16] Meying Liang, Adnan Ali, Abdelhak Belaidi, Mohammad Hossain, Oskar Ronan, Clive Downing, Nouar Tabet, Stefano Sanvito, Fedwa El Mellouhi, and Valeria Nicolosi, Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides, npj 2D Mater. Appl. 4, 40 (2020).

[15] Peng Jiang, Lili Kang, Hua Hao, Xiaohong Zheng, Zhi Zeng and Stefano Sanvito, Ferroelectric control of electron half-metallicity in A-type antiferromagnet and its novel application in nonvolatile memory devices, Phys. Rev. B 102, 245417 (2020).

[14] Alessandro Lunghi and Stefano Sanvito, Multiple spin-phonon relaxation pathways in a Kramer single-ion magnet, J. Chem. Phys. 153, 174113 (2020)

[13] Peng Jiang, Lili Kang, Xiaohong Zheng, Zhi Zeng, and Stefano Sanvito, Computational prediction of a two-dimensional semiconductor SnO2 with negative Poisson’s ratio and tunable magnetism by doping, Phys. Rev. B 102, 195408 (2020).

[12] Chunmei Zhang, Lei Zhang, Cheng Tang, Stefano Sanvito and Aijun Du, First-Principles Study of Mn-doped In2Se3 Monolayer: Coexistence of Ferromagnetic and Ferroelectricity with Robust Half-metallicity and Enhanced Polarization, Phys. Rev. B 102, 134416 (2020).

[11] Sabine Körbel and Stefano Sanvito, Photovoltage from ferroelectric domain walls in BiFeO3, Phys. Rev. B 102, 081304(R) (2020).

[10] Alessandro Lunghi and Stefano Sanvito, The limit of spin lifetime in solid-state electronic spins, J. Phys. Chem. Lett. 11, 6273 (2020).

[9] Subhayan Roychoudhury, Stefano Sanvito, and David D. O’Regan. Neutral excitation density- functional theory: an efficient and variational first-principles method for simulating neutral excitations in molecules. Sci. Rep. 10, 8947, (2020)

[8] Syam Kumar R., Akinlolu Akande, Fedwa El-Mellouhi, Heesoo Park and Stefano SanvitoTheoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides, Phys. Rev. Materials 4, 075401 (2020)

[7] Ce Huang, Awadhesh Narayan, Enze Zhang, Xiaoyi Xie, Linfeng Ai, Shanshan Liu, Changjiang Yi, Youguo Shi, Stefano Sanvito, Faxian XiuEdge Superconductivity in multilayer WTe2 Josephson junctions, National Science Review, nwaa114 (2020)

[6] Qilong Sun, Sohee Kwon, Maria Stamenova, Stefano Sanvito, and Nicholas KioussisElectric field modulation of magnetism in ferromagnetic Heusler heterostructures. Phys. Rev. B 101, 134419 (2020).

[5] M. Cobelli, M. Galante, S. Gabardi, S. Sanvito, and M. Bernasconi. First-Principles Study of Electromigration in the Metallic Liquid State of GeTe and Sb2Te3 Phase-Change Compounds. J. Phys. Chem. C 124, 9599 (2020).

[4]  E. Garlatti, L. Tesi, A. Lunghi, M. Atzori, D. Voneshen, P. Santini, S. Sanvito, T. Guidi, R. Sessoli, and S. Carretta. Unveiling phonons in a molecular quantum bit prototype with four-dimensional inelastic neutron scattering. Nature Communication 11, 1751 (2020).

[3]  Adnan Ali, Heesoo Park, Raghvendra Mall, Brahim Aissa, Stefano Sanvito, Halima Bensmail, Abdelhak Belaidi, and Fedwa EI-Mellouhi. Machine-Learning-Accelerated Recovery of the Cubic Structure in Mixed Cation Perovskite Thin Films. Chem. Mat., (2020).

[2]  Alessandro Lunghi and Stefano Sanvito. Surfing multiple conformation-property landscapes via machine learning: Designing magnetic anisotropy. J. Chem. Phys. C 124, 5802–5806 (2019).

[1]  Yanhui Zhang, Alessandro Lunghi, and Stefano Sanvito. Pushing the limits of atomistic simulations towards ultra-high temperature: a machine-learning force field for ZrB2. Acta Materialia 186, 467 (2020).

2019

[19] Matthew O. A. Ellis, Mario Galante, and Stefano Sanvito. The role of longitudinal fluctuations in L10 FePt. Phys. Rev. B 100, 214434 (2019).

[18]  Stefana Anais Colibaba, Sabine Korbel, Carlo Motta, Fedwa El-Mellouhi, and Stefano Sanvito. Interlayer dielectric function of a type-II van der Waals semiconductor: the HfS2/PtS2 hetero-bilayer. Phys. Rev. Mater. 3, 124002 (2019).

[17] James Nelson and Stefano Sanvito. Predicting the Curie temperature of ferromagnets using machine learning. Phys. Rev. Mat. 3, 104405 (2019)

[16]  Alessandro Lunghi and Stefano Sanvito. How do phonons relax molecular spins? Science Advances 5, eaax7163 (2019).

[15]  Jian-Yao Zheng, Hugh Manning, Yanhui Zhang, Jing Jing Wang, Finn Purcell-Milton, Anuj Pokle, Stephen-Barry Porter, Chuan Zhong, Jing Li, Rudi O’Reilly Meehan, Ryan Enright, Yurii K. Gun’ko, Valeria Nicolosi, John J. Boland, Stefano Sanvito, and John F. Donegan. Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Scientific Reports 9, 11738 (2019).

[14] Heesoo Park, Raghvendra Mall, Fahhad H. Alharbi, Stefano Sanvito, Nouar Tabet, Halima Bensmail, and Fedwa El-Mellouhi. Learn and Match Molecular Cations for Perovskites. J. Phys. Chem. A 123, 7323 (2019)

[13] Alessandro Lunghi and Stefano Sanvito, A unified picture of the covalent bond within quantum-accurate force fields: from simple organic molecules to metallic complexes’ reactivity, Science Advances 5, eaaw2210 (2019).

[12] Yanhui Zhang and Stefano Sanvito, Interface engineering of graphene nanosheet reinforced ZrB2 composites by tuning surface contacts, Phys. Rev. Materials 3, 073604 (2019).

[11] Andrea Albino, Stefano Benci, Lorenzo Tesi, Matteo Atzori, Renato Torre, Stefano Sanvito, Roberta Sessoli and Alessandro Lunghi, First-Principles Investigation of Spin–Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits, Inorg. Chem. 58, 10260 (2019).

[10] Hannah C. Nerl, Anuj Pokle, Lewys Jones, Knut Müller‐Caspary, Karel H. W. van den Bos, Clive Downing, Eoin K. McCarthy, Nicolas Gauquelin, Quentin M. Ramasse, Ivan Lobato, Dermot Daly, Juan Carlos Idrobo, Sandra Van Aert, Gustaaf Van Tendeloo, Stefano Sanvito, Jonathan N. Coleman, Clotilde S. Cucinotta and Valeria Nicolosi, Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus, Adv. Func. Mat. 1903120 (2019).

[9] Heesoo Park, Raghvendra Mall, Fahhad Alharbi, Stefano Sanvito, Nouar Tabet, Halima Bensmail and Fedwa El-Mellouhi. Exploring New Approaches towards the Formability of Mixed-Ion Perovskite by High-throughput DFT and Machine Learning, Phys. Chem. Chem. Phys. 21, 1078 (2019).

[8] Alessandro Lunghi and Stefano Sanvito, Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics, J. Magn. Magn. Matter. 487, 165325  (2019).

[7] Cheng Zhang, Zhuoliang Ni, Jinglei Zhang, Xiang Yuan, Yanwen Liu, Yichao Zou, Zhiming Liao, Yongping Du, Awadhesh Narayan, Hongming Zhang, Tiancheng Gu, Xuesong Zhu, Li Pi, Stefano Sanvito, Xiaodong Han, Jin Zou, Yi Shi, Xiangang Wan, Sergey Y. Savrasov and Faxian Xiu, Ultrahigh conductivity in Weyl semimetal NbAs nanobelts, Nature Materials 18, 482 (2019).

[6] Andrea Droghetti and Stefano SanvitoImpurity band magnetism in organic semiconductors, Phys. Rev. B 99, 094413 (2019).

[5] Gabriele Saleh, Chen Xu and Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations, Angew. Chem. Int. Ed. 58, 6017 (2019).

[4] Enhancing the electronic dimensionality of hybrid organic–inorganic frameworks by hydrogen bonded molecular cations, Mat. Horizon 6, 1187 (2019).

[3] James Nelson, Rajarshi Tiwari and Stefano Sanvito. Machine learning density functional theory for the Hubbard model, Phys. Rev. B 99, 075132 (2019).

[2] Chunmei Zhang, Yihan Nie, Stefano Sanvito and Aijun Du. First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization, Nano Lett. 19, 1366 (2019).

[1] Mario Galante, Matthew O. A. Ellis, and Stefano Sanvito. Nontrivial spatial dependence of the spin torques in L10 FePt-based tunneling junctions, Phys. Rev. B 99, 014401 (2019).

2018

[17] Zhang, C., Zhang, Y., Yuan, X., Lu, S., Zhang, J., Narayan, A., Liu, Y., Zhang, H., Ni, Z., Liu, R., Sang Choi, E., Suslov, A., Sanvito, S., Pi, L., Lu, H.Z., Potter, A. C., Xiu. F. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature. 1476-4687 (2018).

[16] Corey Oses, Eric Gossett, David Hicks, Frisco Rose, Michael J. Mehl, Eric Perim, Ichiro Takeuchi, Stefano Sanvito, Matthias Scheffler, Yoav Lederer, Ohad Levy, Cormac Toher and Stefano Curtarolo. AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. J. Chem. Inf. Model. 58, 2477–2490 (2018).

[15] Subhayan Roychoudhury and Stefano Sanvito. Spin-phonon coupling parameters from maximally localized Wannier functions and first-principles electronic structure: Single-crystal durene. Phys. Rev. B 98, 125204 (2018).

[14] Sabine Korbel, Jirka Hlinka, and Stefano Sanvito. Electron trapping at ferroelectric domain walls in BiFeO3. Phys. Rev. B 98, 100104(R) (2018).

[13] Yanhui Zhang and Stefano Sanvito. First-principles investigation of the thermodynamic stability of MB2 materials surfaces (M=Ti/Zr/Hf), J. Am. Cer. Soc 101, 4118-4127 (2018).

[12] Minglang Wang, Hao Wang, Guangping Zhang, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions, J. Chem. Phys. 148, 184703 (2018).

[11] Heesoo Park, Fahhad H Alharbi, Stefano Sanvito, Nouar Tabet, and Fedwa El-Mellouhi. Searching for Photoactive Polymorphs of CsNbQ3 (Q=O, S, Se, Te) with Enhanced Optical Properties and Intrinsic Thermodynamic Stabilities, J. Phys. Chem. C 122, 8814-8821 (2018).

[10] Salvador Cardona-Serra, Alejandro Gaita-Arino, Efren Navarro-Moratalla and Stefano Sanvito. Proposal for a Dual Spin Filter Based on [VO(C3S4O)(2)](2-), J. Phys. Chem. C 122, 6417-6421 (2018).

[9] W. Rotjanapittayakul, W. Pijitrojana, T. Archer, S. Sanvito and J. Prasongkit. Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes, Scientific Reports 8, 4779 (2018).

[8] Carlo Motta and Stefano Sanvito. Electron-Phonon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles, J. Phys. Chem. C 122, 1361-1366 (2018).

[7] Ce Huang, Awadhesh Narayan, Enze Zhang, Yanwen Liu, Xiao Yan, Liyang Qiu, Cheng Zhang, Weiyi Wang, Tong Zhou, Changjiang Yi, Shanshan Liu, Jiwei Ling, Huiqin Zhang, Raman Sankar, Fangcheng Chou, Yihua Wang, Youguo Shi, Kam Tuen Law, Stefano Sanvito, Peng Zhou, Zheng Han, and Faxian Xiu. Inducing Strong Superconductivity in WTe2 by a Proximity Effect, ACS Nano 12, 7185 (2018).

[6] Yanwen Liu, Rajarshi Tiwari, Awadhesh Narayan, Zhao Jin, Xiang Yuan, Cheng Zhang, Feng Chen, Liang Li, Zhengcai Xia, Stefano Sanvito, Peng Zhou, and Faxian Xiu. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films, Phys. Rev. B 97, 085303 (2018).

[5] Linda A. Zotti, Stefano Sanvito and David D. O’Regan. A simple descriptor for energetics at fcc-bcc metal interfaces, Materials & Design 142, 158-165 (2018).

[4] Heesoo Park, Fahhad H. Alharbi, Stefano Sanvito, Nouar Tabet and Fedwa El-Mellouhi. Elucidating the Impact of Chalcogen Content on the Photovoltaic Properties of Oxychalcogenide Perovkskites: NaMO_{3−x}Q_x (M=Nb, Ta; Q=S, Se, Te), ChemPhysChem 19, 703-714 (2018).

[3] Seeram Ramakrishna, Tong-Yi Zhang, Wen-Cong Lu, Quan Qian, Jonathan Sze Choong Low, Jeremy Heiarii Ronald Yune, Daren Zong Loong Tan, Stéphane Bressan, Stefano Sanvito and Surya R. Kalidindi. Materials informatics, J. Intell. Manuf. https://doi.org/10.1007/s10845-018-1392-0 (2018).

[2] Subhayan Roychoudhury, David D. O’Regan and Stefano Sanvito. Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene, Phys. Rev. B 97, 205120 (2018).

[1] G. Saleh, C. Xu, and S. Sanvito. Ab Initio Surface Properties of Ag-Sn alloys: Implications for Lead-Free Soldering. Phys. Chem. Chem. Phys. 20, 4277 (2018).

2017

[22] Matthew O. Ellis, Maria Stamenova, and Stefano Sanvito. Multi-scale modelling of current-induced switching in magnetic tunnel junctions. Phys. Rev. B 96, 224410 (2017).

[21] Zhuoling Jiang, Hao Wang, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Tailoring the polarity of charge carriers in graphene-porphine-graphene molecular junctions through linkage motifs. J. Phys. Chem. C 121, 27344 (2017).

[20] S. Bagherzadeh-Nobari, R. Kalantarinejad, M. Elahi, and S. Sanvito. Computational investigation of label free detection of biomolecules based on armchair graphene nanoribbon. Sensors and Actuators B 255, 1276 (2017).

[19] Cheng Zhang, Awadhesh Narayan, Shiheng Lu, Jinglei Zhang, Huiqin Zhang, Zhuoliang Ni, Xiang Yuan, Yanwen Liu, Ju-Hyun Park, Enze Zhang, Weiyi Wang, Shanshan Liu, Long Cheng, Li Pi, Zhigao Sheng, Stefano Sanvito, and Faxian Xiu. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nature Communications 8, 1272 (2017).

[18] Cheng Zhang, Jianping Sun, Fengliang Liu, Awadhesh Narayan, Nana Li, Xiang Yuan, Yanwen Liu, Jianhong Dai, Youwen Long, Yoshiya Uwatoko, Jian Shen, Stefano Sanvito, Wenge Yang, Jinguang Cheng, and Faxian Xiu. Evidence for pressure-induced node-pair annihilation in Cd3As2. Phys. Rev. B 96, 155205 (2017).

[17] Alessandro Lunghi, Federico Totti, Stefano Sanvito and Roberta Sessoli. Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets. Chemical Science 8, 6051 (2017).

[16] Glenn Moynihan, Stefano Sanvito, and David D. O’Regan. Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials. 2D Mater. 4, 045018 (2017).

[15] Edmund Long, Sean O’Brien, Edward A. Lewis, Eric Prestat, Clive Downing, Clotilde S. Cucinotta, Stefano Sanvito, Sarah J. Haigh and Valeria Nicolosi. An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide. npj 2D Materials and Applications 1, 22 (2016).

[14] Jacopo Simoni, Maria Stamenova, and Stefano Sanvito. Ab initio dynamical exchange interactions in frustrated antiferromagnets. Phys. Rev. B 96, 054411 (2017). Editor’s Suggestion.

[13] Yalong Jiao, Fengxian Ma, John Bell, Stefano Sanvito, and Aijun Du. First-principles prediction of spin-polarized multiple Dirac rings in manganese fluoride. Phys. Rev. Lett. 119, 016403 (2017).

[12] Hisao Nakamura, Ivan Rungger, Stefano Sanvito, Nobuki Inoue, Junji Tominaga, and Yoshihiro Asai. Resistive switching mechanism of GeTe-Sb2Te3 interfacial phase change memory and topological properties of embedded two-dimensional states. Nanoscale 9, 9386–9395 (2017).

[11] Alexandr Alekhin, Ilya Razdolski, Nikita Ilin, Jan P. Meyburg, Detlef Diesing, Vladimir Roddatis, Ivan Rungger, Maria Stamenova, Stefano Sanvito, Uwe Bovensiepen, and Alexey Melnikov. Femtosecond Spin Current Pulses Generated by the Nonthermal Spin-Dependent Seebeck Effect and Interacting with Ferromagnets in Spin Valves. Phys. Rev. Lett. 119, 017202 (2017).

[10] A. Dankert, P. Pashaei, M.D. Anamul Hoque, M.V. Kamalakar, S.P. Dash, A.P.S. Gaur, S. Sahoo, R.S. Katiyar, M.P. de Jong, I. Rungger, A. Narayan, K. Dolui, and S. Sanvito. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulphide. ACS Nano 11, 6389 (2017).

[9] Salvador Cardona-Serra, Maria Stamenova, and Stefano Sanvito. Theoretical Evaluation of [VIV (α-C3S5)3]2− as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor. J. Phys. Chem. Lett. 8, 3056 (2017).

[8] J. Simoni, M. Stamenova, and S. Sanvito. Ultrafast demagnetizing fields from first principles. Phys. Rev. B 95, 024412 (2017).

[7] G. Shukla, T. Archer, and S. Sanvito. HfO2 and SiO2 as barriers in magnetic tunneling junctions. Phys. Rev. B 95, 184410 (2017).

[6] Stefano Sanvito, Corey Oses, Junkai Xue, Anurag Tiwari, Mario Zic, Thomas Archer, Pelin Tozman, Munuswamy Venkatesan, Michael Coey, and Stefano Curtarolo. Accelerated discovery of new magnets in the Heusler alloy family. Science Advances 3, e1602241 (2017).

[5] A. Lunghi, F. Totti, R. Sessoli, and S. Sanvito. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nature Communication 8, 14620 (2017).

[4] Fedwa El Mellouhi, Akinlolu Akande, Carlo Motta, Sergey N. Rashkeev, Golibjon Berdiyorov, Mohamed El-Amine Madjet, Stefano Sanvito, Sabre Kais, and Fahhad H. Alharbi. Solar cells materials by design: Hybrid pyroxene corner-sharing VO4 tetrahedral chains. ChemSusChem 10, (2017).

[3] Subhayan Roychoudhury and Stefano Sanvito. Spin-orbit Hamiltonian for organic crystals from first principles electronic structure and Wannier functions. Phys. Rev. B 95, 085126 (2017).

[2] Maria Stamenova, Razie Mohebbi, Jamileh Seyed-Yazdi, Ivan Rungger, and Stefano Sanvito. First-principles spin-transfer torque in CuMnAs|GaP|CuMnAs junctions. Phys. Rev. B 95, 060403(R) (2017).

[1] Salvador Cardona-Serra and Stefano Sanvito. Influence of the dipolar interactions on the relative stability of the low spin state in spin crossover systems. J. Comp. Chem. 38, 224 (2017).

2016

[24] Hao Wang, Zhuoling Jiang, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Quantitative interpretation of the low-bias conductance of Au-mesitylene-Au molecular junctions formed from mesitylene monolayers. Chem Phys. Chem. 17, 2272 (2016).

[23] Xingchen Tu, Minglang Wang, Ziyong Shen, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Cu-metalated carbyne acting as a promising molecular wire. J. Chem. Phys. 145, 244702 (2016).

[22] Xiang Yuan, Cheng Zhang, Yanwen Liu, Awadhesh Narayan, Chaoyu Song, Shoudong Shen, Xing Sui, Jie Xu, Haochi Yu, Zhenghua An, Jun Zhao, Stefano Sanvito, Hugen Yan, and Faxian Xiu. Observation of quasi-two-dimensional Dirac fermions in ZrTe5. NPG Asia Materials 8, e325 (2016).

[21] Andrea Droghetti, Philip Thielen, Ivan Rungger, Norman Haag, Nicolas Grossmann, Johannes Stoeckl, Benjamin Stadtmuller, Martin Aeschlimann, Stefano Sanvito, and Mirko Cinchetti. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nature Communication 7, 12668 (2016).

[20] E. Montes, I. Rungger, S. Sanvito, and U. Schwingenschloegl. Tunneling magnetoresistance in Si nanowires. New J. Phys. 18, 113024 (2016).

[19] Fengxian Ma, Yalong Jiao, Guoping Gao, Yuantong Gu, Ante Bilic, Stefano Sanvito, and Aijun Du. Substantial Bandgap Tuning and Strain Controlled Phase Transition between Semiconductor and Gapless/Band-inverted Semi-metal in Rutile Lead/Stannic Dioxide. ACS Appl. Mater. Interfaces 8, 25667 (2016).

[18] Maria Fumanal, Lucas K. Wagner, Stefano Sanvito, and Andrea Droghetti. Diffusion Monte Carlo Perspective on the Spin-State Energetics of [Fe(NCH)6]2+. J. Chem. Theory Comp. 12, 4233 (2016).

[17] Jian-Yao Zheng, Hongjun Xu, Jing Jing Wang, Sinead Winters, Carlo Motta, Weigang Zhu, Toby Hallam, Eswaraiah Varrla, Georg Duesberg, Stefano Sanvito, Wenping Hu, and John F. Donegan. Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities. Nano Lett. 16, 4754 (2016).

[16] Kapildeb Dolui and Stefano Sanvito. Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2. Eur. Phys. Lett. 115, 47001 (2016).

[15] C. Morari, L. Buimaga-Iarinca, I. Rungger, S. Sanvito, S. Melinte, and G.-M. Rignanese. Charge and spin transport in single and packed ruthenium-terpyridine molecular devices: Insight from first-principles calculations. Scientific Report 6, 31856 (2016).

[14] A. Akande and S. Sanvito. Persistent current and Drude weight of one-dimensional interacting fermions on imperfect ring from current lattice density functional theory. J. Phys.: Condens. Matter 28, 445601 (2016).

[13] Yanwen Liu, Xiang Yuan, Cheng Zhang, Zhao Jin, Awadhesh Narayan, Chen Luo, Zhigang Chen, Lei Yang, Jin Zou, Xing Wu, Stefano Sanvito, Zhengcai Xia, Liang Li, Zhong Wang, and Faxian Xiu. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nature Communication 7, 12516 (2016).

[12] Maria O’Brien, Niall McEvoy, Carlo Motta, Jian-Yao Zheng, Nina C. Berner, Jani Kotakoski, Kenan Elibol, Timothy J. Pennycook, Jannik Meyer, Chanyoung Yim, Mohamed Abid, Toby Hallam, John F. Donegan, Stefano Sanvito, and Georg S. Duesberg. Raman characterization of platinum diselenide thin films. 2D Materials 3, 021004 (2016).

[11] Zhuoling Jiang, Hao Wang, Ziyong Shen, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Effects of the molecule-electrode interface on the low-bias conductance of Cu-H2-Cu single-molecule junctions. J. Chem. Phys. 145, 044701 (2016).

[10] Maria Stamenova, Jacopo Simoni, and Stefano Sanvito. Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters. Phys. Rev. B 94, 014423 (2016).

[9] Meilin Bai, Clotilde S. Cucinotta, Zhuoling Jiang, Ivan Rungger, Stefano Sanvito, and Shimin Hou. Current-induced phonons renormalization in molecular junctions. Phys. Rev. B 94, 035411 (2016).

[8] Pankaj Mandal Carlo Motta and Stefano Sanvito. Effects of molecular dipole orientation on the exciton binding energy of CH3NH3PbI3. Phys. Rev. B 94, 045202 (2016).

[7] J.T. Obodo, I. Rungger, S. Sanvito, and U. Schwingenschloegl. Current-induced changes of migration energy barriers in carbon based systems. Nanoscale 8, 10310 (2016).

[6] Carlo Motta, Fedwa El-Mellouhi, and Stefano Sanvito. Exploring the cation dynamics in lead-bromide hybrid perovskites. Phys. Rev. B 93, 235412 (2016).

[5] A. Droghetti, I. Rungger, C.D. Pemmaraju, and S. Sanvito. Fundamental gap of molecular crystals via constrained Density Functional Theory. Phys. Rev. B 93, 195208 (2016).

[4] Zhuoling Jiang, Hao Wang, Stefano Sanvito, and Shimin Hou. Origin of the periodic structure in the conductance curve of gold nanojunctions in hydrogen environment. Phys. Rev. B 93, 125438 (2016).

[3] Mario Zic, Karsten Rode, Naganivetha Thiyagarajah, Yong-Chang Lau, Davide Betto, J.M.D. Coey, Stefano Sanvito, Kerry J. O’Shea, Ciaran A. Ferguson, Donald A. MacLaren, and Thomas Archer. Designing a fully compensated half-metallic ferrimagnet. Phys. Rev. B 93, 140202(R) (2016).

[2] Yalong Jiao, Liujiang Zhou, Fengxian Ma, Guoping Gao, Liangzhi Kou, John Bell, Stefano Sanvito, and Aijun Du. Predicting Single-Layer Technetium Dichalcogenides (TcX2, X=S, Se) with Promising Applications in Photovoltaics and Photocatalysis. ACS Appl. Mater. Interfaces 8, 5385 (2016).

[1] Subhayan Roychoudhury, Carlo Motta, and Stefano Sanvito. Charge transfer energies of benzene physisorbed on a graphene sheet from constrained density functional theory. Phys. Rev. B 93, 045130 (2016).

2015

[17] A. M. Souza, I. Rungger, U. Schwingenschloegl, and S. Sanvito. Image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach. Nanoscale 7, 19231 (2015).

[16] Zhuoling Jiang, Hao Wang, Stefano Sanvito, and Shimin Hou. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface. J. Chem. Phys. 143, 234709 (2015).

[15] Yanwen Liu, Cheng Zhang, Xiang Yuan, Tang Lei, Chao Wang, Domenico Di Sante, Awadhesh Narayan, Liang He, Silvia Picozzi, Stefano Sanvito, Renchao Che, and Faxian Xiu. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. Materials Asia 7, 1 (2015).

[14] Damien Hanlon, Claudia Backes, Evie Doherty, Clotilde S. Cucinotta, Nina C. Berner, Conor Boland, Kangho Lee, Peter Lynch, Zahra Gholamvand, Andrew Harvey, Saifeng Zhang, Kang- peng Wang, Glenn Moynihan, Anuj Pokle, Quentin M. Ramasse, Niall McEvoy, Werner J Blau, Jun Wang, Stefano Sanvito, David D. O’Regan, Georg S. Duesberg, Valeria Nicolosi, and Jonathan N. Coleman. Liquid exfoliation of solvent-stabilised black phosphorus: applications beyond electronics. Nature Communication 6, 8563 (2015).

[13] S. Jakobs, A. Narayan, B. Stadtmueller, A. Droghetti, I. Rungger, Y.S. Hor, S. Klyatskaya, D. Jungkenn, J. Stoeckl, M. Laux, O.L.A. Monti, M. Aeschlimann, R.J. Cava, M. Ruben, S. Mathias, S. Sanvito, and M. Cinchetti. Controlling the spin-texture of topological insulators with organic molecules. Nano Lett. 15, 6022 (2015).

[12] Stefano Sanvito, Carlo Motta, and Fadwa El-Mellouhi. Waltzing molecules for high-efficiency photovoltaics. SPIE Newsroom, page 10.1117/2.1201509.006060, (2015).

[11] Carlo Motta, Fedwa El Mellouhi, and Stefano Sanvito. Charge carrier mobility in hybrid halide perovskites. Scientific Reports 5, 12746 (2015).

[10] Weiyi Wang, Awadhesh Narayan, Lei Tang, Kapildeb Dolui, Yanwen Liu, Xiang Yuan, Yibo Jin, Yizheng Wu, Ivan Rungger, Stefano Sanvito, and Faxian Xiu. Spin-Valve Effect in NiFe/MoS2/NiFe Junctions. Nano Lett. 15, 5261 (2015).

[9] P. Mcguiness, O. Akdogan, A. Asali, S. Bance, F. Bittner, J. M. D. Coey, N. M. Dempsey, J. Fidler, D. Givord, O. Gutfleisch, M. Katter, D. Le Roy, S. Sanvito, T. Schrefl, L. Schultz, C. Schwoebl, M. Soderznik, S. Sturm, P. Tozman, K. stuner, M. Venkatesan, T. G. Woodcock, K. Zagar, and S. Kobe. Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials. JOM 67, 1306 (2015).

[8] Clotilde S. Cucinotta, Kapildeb Dolui, Henrik Pettersson, Quentin M. Ramasse, Edmund Long, Sean E. O’Brian, Valeria Nicolosi, and Stefano Sanvito. Electronic properties and chemical reactivity of TiS2 nanoflakes. J. Phys. Chem. C 119, 15707 (2015).

[7] A. Droghetti, I. Rungger, M. Cinchetti, and S. Sanvito. Vibron-assisted spin relaxation at a metal/organic interface. Phys. Rev. B 91, 224427 (2015).

[6] Kathrin C. Knirsch, Nina C. Berner, Hannah C. Nerl, Clotilde S. Cucinotta, Zahra Gholamvand, Niall McEvoy, Zhenxing Wang, Irena Abramovic, Philipp Vecera, Marcus Halik, Stefano Sanvito, Georg S. Duesberg, Valeria Nicolosi, Frank Hauke, Andreas Hirsch, Jonathan N. Coleman, and Claudia Backes. Basal-plane functionalisation of chemically-exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018 (2015).

[5] Carlo Motta, Fedwa El Mellouhi, Sabre Kais, Nouar Tabet, Fahhad Alharb, and Stefano Sanvito. Revealing the role of organic ligands in hybrid halide perovskites CH3NH3PbI3. Nature Communication 6, 7026 (2015).

[4] Borislav Naydenov, Ivan Rungger, Mauro Mantega, Stefano Sanvito, and John J. Boland. Single-Atom Based Coherent Quantum Interference Device Structure. Nano Lett. 15, 2881 (2015).

[3] A. Murat, I. Rungger, S. Sanvito, and Schwingenschloegl. Mechanism of H2O Induced Conductance Changes in AuCl4 Functionalized CNTs. J. Phys. Chem. C (2015).

[2] Yang Li, Xingchen Tu, Hao Wang, Stefano Sanvito, and Shimin Hou. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups. J. Chem. Phys. 142, 164701 (2015).

[1] A. Narayan, I. Rungger, and S. Sanvito. Single atom anisotropic magnetoresistance on a topological insulator surface. New J. Phys. 17, 033021 (2015).

2014

[17] Awadhesh Narayan, Domenico Di Sante, Silvia Picozzi, and Stefano Sanvito. Topological Tuning in Three-Dimensional Dirac Semimetals. Phys. Rev. Lett. 113, 256403 (2014).

[16] C. Motta and S. Sanvito. Charge transport properties of durene crystals from first principles. J. Chem. Theo. Comp. 10, 4624 (2014).

[15] Awadhesh Narayan, Ivan Rungger, Andrea Droghetti, and Stefano Sanvito. Ab initio transport across bismuth selenide surface barriers. Phys. Rev. B 90, 205431 (2014).

[14] Xingchen Tu, Minglang Wang, Stefano Sanvito, and Shimin Hou. Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts. J. Chem. Phys. 141, 194702 (2014).

[13] Konstantinos Gkionis, Joshua T. Obodo, Clotilde Cucinotta, Stefano Sanvito, and Udo Schwingenschloegl. Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions. J. Mater. Chem. A 2, 16498 (2014).

[12] Yang Li, Xingcheng Tu, Stefano Sanvito, and Shimin Hou. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. J. Chem. Phys. 141, 174702 (2014).

[11] Amaury de Melo Souza, Ivan Rungger, Renato Borges Pontes, Alexandre Reily Rocha, Antonio Jose Roque da Silva, Udo Schwingenschloegl, and Stefano Sanvito. Stretching of BDT-gold molecular junctions: thiol or thiolate termination? Nanoscale, 6, 14495 (2014).

[10] I. Popov, M. Mantega, A. Narayan, and S. Sanvito. Proximity-induced topological state in graphene. Phys. Rev. B 90, 035418 (2014).

[9] Kunlin Wu, Meilin Bai, Stefano Sanvito, and Shimin Hou. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes. J. Chem. Phys. 141, 014707 (2014).

[8] K. Dolui, A. Narayan, I. Rungger, and S. Sanvito. Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90, 041401(R) (2014).

[7] A. Droghetti, M. Cinchetti, and S. Sanvito. Electronic structure of metal quinoline molecules from G0W0 calculations. Phys. Rev. B 89, 245137 (2014).

[6] Sandip Bhattacharya, Akinlolu Akande, and Stefano Sanvito. Spin transport properties of triarylamine-based nanowires. Chem. Comm. 50, 6626 (2014).

[5] Aleksey Shmeliov, Mervyn Shannon, Peng Wang, Judy S. Kim, Eiji Okunishi, Peter D. Nellist, Kapildeb Dolui, Stefano Sanvito, and Valeria Nicolosi. Unusual Stacking variations in liquid-phase exfoliated Transition Metal Dichalcogenides. ACS Nano 8, 3690 (2014).

[4] Altynbek Murat, Ivan Rungger, Chengjun Jin, Stefano Sanvito, and Udo Schwingenschloegl. Origin of the p-type character of AuCl3 functionalized carbon nanotubes. J. Phys. Chem. C 118, 3319 (2014).

[3] A. Droghetti, S. Steil, N. Grossmann, N. Haag, H. Zhang, M. Willis, W.P. Gillin, A.J. Drew, M. Aeschlimann, S. Sanvito, and M. Cinchetti. Electronic and magnetic properties of the interface between metal-quinoline molecules and cobalt. Phys. Rev. B 89, 094412 (2014).

[2] A. Narayan and S. Sanvito. Multiprobe quantum spin Hall bars. Eur. Phys. J. B 87, 43 (2014).

[1] A. Akande, S. Bhattacharya, T. Cathcart, and S. Sanvito. First principles study of the structural, electronic and transport properties of triarylamine-based nanowires. J. Phys. Chem. 140, 074301 (2014).

2013

[24] E. Montes, K. Gkionis, I. Rungger, S. Sanvito, and U. Schwingenschloegl. Structural and tunneling properties of Si nanowires. Phys. Rev. B 88, 235411 (2013).

[23] Sabine Mueller, Sabine Steil, Andrea Droghetti, Nicolas Grossmann, Stefano Sanvito, Velimir Meded, Andrea Magri, Mario Ruben, Mirko Cinchetti, and Martin Aeschlimann. Spin-dependent electronic structure of the Co-Al(HP)3 interface. New J. Phys. 15, 113054 (2013).

[22] Kunlin Wu, Meilin Bai, Stefano Sanvito, and Shimin Hou. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions. J. Chem. Phys. 139, 194703 (2013).

[21] A.M. Souza, I. Rungger, C.D. Pemmaraju, U. Schwingenschloegl, and S. Sanvito. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces. Phys. Rev. B 88, 165112 (2013).

[20] A. Narayan, A. Hurley, and S. Sanvito. Gate controlled spin pumping at a quantum spin Hall edge. Appl. Phys. Lett. 103, 142407 (2013).

[19] M. Stamenova and S. Sanvito. Dynamical exchange interaction from time-dependent spin density functional theory. Phys. Rev. B 88, 104423 (2013).

[18] J.T. Obodo, K. Gkionis, I. Rungger, S. Sanvito, and U. Schwingenschloegl. Hydrogen bonding as the origin on the switching behavior in dithiolated phenylene-vinylene oligomers. Phys. Rev. B 88, 085438 (2013).

[17] K. Dolui, I. Rungger, C.D. Pemmaraju, and S. Sanvito. Ab-initio study on the possible doping strategies for MoS2 monolayers. Phys. Rev. B 88, 075420 (2013).

[16] A. Hurley and S. Sanvito. Strategy for detection of electrostatic spin-crossover effect in magnetic molecules. Phys. Rev. B 88, 054409 (2013).

[15] I. Abdolhosseini Sarsari, C. D. Pemmaraju, Hadi Salamati, and S. Sanvito. Many-body quasi-particles spectrum of Co doped ZnO: a GW perspective. Phys. Rev. B 87, 245118 (2013).

[14] A. Bilic and S. Sanvito. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. J. Phys.: Condens. Matter 25, 275301 (2013).

[13] A. Hurley, A. Narayan, and S. Sanvito. Spin-pumping and inelastic electron tunneling spectroscopy in topological insulators. Phys. Rev. B 87, 245410 (2013).

[12] T. Ohto, I. Rungger, K. Yamashita, H. Nakamura, and S. Sanvito. Ab initio theory for current-induced molecular switching: Melamine on Cu(001). Phys. Rev. B 87, 205439 (2013).

[11] Karsten Rode, Nadjib Baadji, Davide Betto, Yong-Chang Lau, Huseyin Kurt, M. Venkatesan, Plamen Stamenov, Stefano Sanvito, J.M.D. Coey, Emiliano Fonda, Edwige Otero, Fadi Choueikani, Philippe Ohresser, Florence Porcher, and Gilles Andre. Site specific order and magnetism in tetragonal Mn3Ga thin films. Phys. Rev. B 87, 184429 (2013).

[10] Yang Li, Stefano Sanvito, and Shimin Hou. Origin of the half-metallic properties of graphitic carbon nitride in bulk and confined forms. J. Mat. Chem. C 1, 3655 (2013).

[9] A. Droghetti, D. Alfe, and S. Sanvito. Ground state of a spin-crossover molecule calculated by diffusion Monte Carlo. Phys. Rev. B 87, 205114 (2013).

[8] Eduard Cremades, Chaitanya Das Pemmaraju, Stefano Sanvito, and Eliseo Ruiz. Spin-Polarized Transport through Single-Molecule Magnet Mn6 Complexes. Nanoscale 5, 4751 (2013).

[7] William R. French, Christopher R. Iacovella, Ivan Rungger, Amaury Melo Souza, Stefano Sanvito, and Peter T. Cummings. Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. J. Phys. Chem. Lett. 4, 887 (2013).

[6] Kapildeb Dolui, Ivan Rungger, and Stefano Sanvito. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 87, 165402 (2013).

[5] Stefano Curtarolo, Gus L. W. Hart, Marco Buongiorno Nardelli, Natalio Mingo, Stefano Sanvito, and Ohad Levy. The high-throughput highway to computational materials design. Nature Materials 12, 191 (2013).

[4] A. Pertsova, M. Stamenova, and S. Sanvito. Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open-boundary conditions approach. J. Phys.: Condens. Matter 25, 105501 (2013).

[3] Nuala M. Caffrey, Daniel Fritsch, Tom Archer, Stefano Sanvito, and Claude Ederer. Spin- filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. Phys. Rev. B 87, 024419 (2013).

[2] A. Bilic and S. Sanvito. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges. J. Chem. Phys. 138, 014704 (2013).

[1] Kunlin Wu, Meilin Bai, Stefano Sanvito, and Shimin Hou. Origin of the transition voltage in gold-vacuum-gold atomic junctions. Nanotechnology 24, 025203 (2013).

2012

[31] N.M. Caffrey, T. Archer, I. Rungger, and S. Sanvito. Coexistance of giant tunneling electroresistance and magnetoresistance in an-all oxides magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).

[30] K. Gkionis, I. Rungger, S. Sanvito, and U. Schwingenschloegl. Protocol for classical molecular dynamics simulations of nano-junctions in solution. J. Appl. Phys. 112, 083714 (2012).

[29] Clotilde S. Cucinotta, Ivan Rungger, and Stefano Sanvito. First principles study of electron tunneling through ice. J. Phys. Chem. C 116, 22129 (2012).

[28] Nuttachai Jutong, Ivan Rungger, Cosima Schuster, Stefano Sanvito, Apirat Siritaratiwat, and Udo Schwingenschloegl. Electronic Transport Through EuO Spin Filter Tunnel Junctions. Phys. Rev. B 86, 205310 (2012).

[27] S. Sanvito and V.A. Dediu. News from the organic arena. Nature Nanotechnology 7, 696 (2012).

[26] Awadhesh Narayan, Ivan Rungger, and Stefano Sanvito. Topological standing wave surface states in Antimony. Phys. Rev. B 86, 201402(R) (2012).

[25] Shizheng Wen, Wei Guan, Likai Yan, Zhongmin Su, and Stefano Sanvito. First principle investigation the transport properties of Lindqvist derivatives based molecular junction. Theo. Chem. Acc. 38, 220 (2012).

[24] H. Kurt, N. Baadji, K. Rode, M. Venkatesan, P. Stamenov, S. Sanvito, and J.M.D. Coey. Magnetic and electronic properties of D022-Mn3Ge (001) films. Appl. Phys. Lett. 101, 132410 (2012).

[23] A. Droghetti, D. Alfe, and S. Sanvito. Assessment of density functional theory for iron(II) molecules across the spin crossover transition. J. Chem. Phys. 137, 124303 (2012).

[22] A. Hurley, N. Baadji, and S. Sanvito. Bias asymmetry in the conductance profile of magnetic ions on surfaces probed by scanning tunneling microscopy. Phys. Rev. B 86, 125411 (2012).

[21] A. Bilic and S. Sanvito. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups. Phys. Rev. B 86, 125409 (2012).

[20] A. Narayan and S. Sanvito. Andreev reflection in two-dimensional topological insulators with either conserved or broken time-reversal symmetry. Phys. Rev. B 86, 041104(R) (2012).

[19] M. Mantega, I. Rungger, B. Naydenov, J.J. Boland, and S. Sanvito. Spectroscopic characterization of a single dangling bond on a bare Si(100)-c(4×2) surface for n- and p-type doping. Phys. Rev. B 86, 035318 (2012).

[18] Andrew DiLullo, Shih-Hsin Chang, Nadjib Baadji, Kendal Clark, Jan-Peter Klockner, Marc Heinrich Prosenc, Stefano Sanvito, Roland Wiesendanger, Germar Hoffmann, and Saw-Wai Hla. Molecular Kondo Chain. Nano Lett. 12, 3174 (2012).

[17] N. Baadji and S. Sanvito. Giant magnetoresistance across the phase transition in spin crossover molecules. Phys. Rev. Lett. 108, 217201 (2012).

[16] Peng Wei, Lili Sun, Enrico Benassi, Ziyong Shen, Stefano Sanvito, and Shimin Hou. Effects of the covalent linker groups on the spin transport properties of single nickelocene molecules attached to single-walled carbon nanotubes. J. Chem. Phys. 136, 194707 (2012).

[15] K. Dolui, C.D. Pemmaraju, and S. Sanvito. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 6, 4823 (2012).

[14] Aijun Du, Stefano Sanvito, and Sean C. Smith. First-Principles Prediction of Metal-Free Magnetism and Intrinsic Half-Metallicity in Graphitic Carbon Nitride. Phys. Rev. Lett. 108, 197207 (2012).

[13] Christian Rinaldi, Matteo Cantoni, Daniela Petti, Andrea Sottocorno, Marco Leone, Nuala M. Caffrey, Stefano Sanvito, and Riccardo Bertacco. Ge-based spin-photodiodes for room temper- ature integrated detection of photons helicity. Adv. Mat. 24, 3037 (2012).

[12] Graeme Cunningham, Mustafa Lotya, Clotilde Cucinotta, Stefano Sanvito, Shane D. Bergin, Robert Menzel, Milo S.P. Shaffer, and Jonathan N. Coleman. Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano 6, 3468 (2012).

[11] X. Chen, I. Rungger, C. D. Pemmaraju, U. Schwingenschloegl, and S. Sanvito. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes. Phys. Rev. B 85, 115436 (2012).

[10] Aijun Du, Stefano Sanvito, Zhen Li, Yan Jiao, Qiao Sun, Zhonghua Zhu, and Sean C. Smith.
Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, ElectronHole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. J. Am. Chem. Soc. 134, 4393 (2012).

[9] Stefano Curtarolo, Wahyu Setyawan, Shidong Wang, Junkai Xue, Kesong Yang, Richard H. Taylor, Gus L. W. Hart, Stefano Sanvito, Marco Buongiorno Nardelli, Natalio Mingo, and Ohad Levy. Aflowlib.org: a material property consortium repository for high-throughput ab initio calculations. Comp. Mat. Sci. 58, 227 (2012).

[8] Jing-Xin Yu, Yan Cheng, Stefano Sanvito, and Xiang-Rong Chen. Bias-dependent oscillatory electron transport properties of mono-atomic sulfur chains. Appl. Phys. Lett. 100, 103110 (2012).

[7] I. Popov, N. Baadji, and S. Sanvito. Magnetism and anti-ferroelectricity in MgB6. Phys. Rev. Lett. 108, 107205 (2012).

[6] Meilin Bai, Jinghong Liang, Liqiang Xie, Stefano Sanvito, Bingwei Mao, and Shimin Hou. Efficient conducting channels formed by the π−π stacking in single [2,2]paracyclophane molecules. J. Chem. Phys. 136, 104701 (2012).

[5] Yang Li, Peng Wei, Meilin Bai, Ziyong Shen, Stefano Sanvito, and Shimin Hou. Contact geometry and electronic transport properties of Ag-benzene-Ag molecular junctions. Chem. Phys. 397, 82 (2012).

[4] Bo Song, Gianaurelio Cuniberti, Stefano Sanvito, and Haiping Fang. Nucleobase adsorbed at graphene devices: enchance biosensorics. Appl. Phys. Lett. 100, 063101 (2012).

[3] A. Akande and S. Sanvito. Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice density functional theory. J. Phys.: Condens. Matter 24, 055602 (2012).

[2] Jing-Xin Yu, Xiang-Rong Chen, Stefano Sanvito, and Yan Cheng. Quantum transport of Au-S-S-Au nanoscale junctions. Appl. Phys. Lett. 100, 013113 (2012).

[1] K. Tao, I. Rungger, S. Sanvito, and V.S. Stepanyuk. Tailoring the magnetoresistance of nanostructures: an ab initio study. Phys. Rev. B 85, 045406 (2012).

2011

[21] T. Methfessel, N. Baadji, S. Sanvito, S. Steil, N. Großmann, K. Koffler, M. Cinchetti, M. Aeschlimann, and H.J. Elmers. Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. Phys. Rev. B 84, 224403 (2011).

[20] B. Naydenov, M. Mantega, I. Rungger, S. Sanvito, and J.J. Boland. Scattered surface charge density: A tool for surface characterization. Phys. Rev. B 84, 195321 (2011).

[19] A. Filippetti, C.D. Pemmaraju, P. Delugas, D. Puggioni, V. Fiorentini, and S. Sanvito. Variational pseudo-self-interaction-corrected density functional approach to the ab initio description of correlated solids and molecules. Phys. Rev. B 84, 195127 (2011).

[18] R. Pilevarshahri, I. Rungger, T. Archer, S. Sanvito, and N. Shahtahmasebi. Spin Transport in higher n-acene molecules. Phys. Rev. B 84, 174437 (2011).

[17] Ante Bilic, Julian D. Gale, and Stefano Sanvito. From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport. Phys. Rev. B 84, 205436 (2011).

[16] A. Pertsova, M. Stamenova, and S. Sanvito. Electrical control of spin dynamics in finite one-dimensional systems. Phys. Rev. B 84, 155436 (2011).

[15] Aaron Hurley, Nadjib Baadji, and Stefano Sanvito. A pertubative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates. Phys. Rev. B 84, 115435 (2011).

[14] LiLi Sun, Peng Wei, Jianhua Wei, Stefano Sanvito, and Shimin Hou. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. J. Phys.: Condens. Matter 23, 425301 (2011).

[13] Anders Odell, Anna Delin, Brje Johansson, Kanchan Ulman, Shobhana Narasimhan, Ivan Rungger, and Stefano Sanvito. Comparison between s- and d-electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods. Phys. Rev. B 84, 165402 (2011).

[12] T. Archer, C.D. Pemmaraju, S. Sanvito, C. Franchini, J. He, A. Filippetti, P. Delugas, D. Puggioni, , V. Fiorentini, R. Tiwari, and P. Majumdar. Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys. Rev. B 84, 115114 (2011).

[11] Ruoxing Zhang, Ivan Rungger, Stefano Sanvito, and Shimin Hou. Current-induced energy barrier suppression for electromigration from first principles. Phys. Rev. B 84, 085445 (2011).

[10] S. Bhattacharya, M.S. Ferreira, and S. Sanvito. Monte-Carlo phase diagram of a Hubbard-Peierls model in the search for spin crossover transition in π-conjugated polymers. J. Phys.: Condens. Matter. 23, 316001 (2011).

[9] A. Hurley, N. Baadji, and S. Sanvito. Spin-flip inelastic electron tunneling spectroscopy in atomic chains. Phys. Rev. B 84, 035427 (2011).

[8] A. Droghetti and S. Sanvito. Electric field control of magnetism in spin crossover molecules. Phys. Rev. Lett. 107, 047201 (2011).

[7] Stefano Sanvito. Organic spintronics: Filtering spins with molecules. Nature Materials (News & Views) 10, 502 (2011).

[6] C. Franchini, T. Archer, Jiangang He, Xing-Qiu Chen, A. Filippetti, and S. Sanvito. Exceptionally strong magnetism in the 4d perovskites RTcO3 (R=Ca, Sr, Ba). Phys. Rev. B 83, 220402(R) (2011).

[5] S. Sanvito. Molecular Spintronics. Chem. Soc. Rev. 40, 3336 (2011).

[4] Nuala M. Caffrey, Thomas Archer, Ivan Rungger, and Stefano Sanvito. Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys. Rev. B 83, 125409 (2011).

[3] Y. Ouyang, S. Sanvito, and J. Guo. Effects of edge chemistry doping on graphene nanoribbon mobility. Surf. Sci. 605, 1643 (2011).

[2] Peng Wei, Lili Sun, Enrico Benassi, Ziyong Shen, Stefano Sanvito, and Shimin Hou. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms. J. Chem. Phys. 134, 244704 (2011).

[1] Renato Borges Pontes, Alexandre Reily Rocha, Stefano Sanvito, Adalberto Fazzio, and Antonio Jose Roque da Silva. Ab Initio Calculations of Structural Evolution and Conductance of Benzene-1,4-dithiol on Gold Leads. ACS Nano 5, 795 (2011).

2010

[23] A. Akande and S. Sanvito. Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study. Phys. Rev. B 82, 245114 (2010).

[22] Stefano Sanvito. Seeing the spin through. Nature (News & Views) 467, 664 (2010).

[21] Nadjib Baadji, Stefan Kuck, Jens Brede, Germar Hoffmann, Roland Wiesendanger, and Stefano Sanvito. Controlled sequential dehydrogenation of single molecules by scanning tunneling microscopy. Phys. Rev. B 82, 115447 (2010).

[20] C.D. Pemmaraju, I. Rungger, X. Chen, A.R. Rocha, and S. Sanvito. Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strand. Phys. Rev. B 82, 125426, (2010).

[19] T. Archer, C.D. Pemmaraju, and S. Sanvito. Magnetic interaction of Co ions near the (10-10) ZnO surface. New. J. Phys. 12, 083061 (2010).

[18] S. Sanvito. The rise of spinterface science. Nature Physics (News & Views) 6, 562 (2010).

[17] I.Rungger, X.Chen, Udo Schwingenschloegl, and Stefano Sanvito. Finite-bias electronic transport of molecules in water solution. Phys. Rev. B 81, 235407 (2010).

[16] A. Droghetti, C.D. Pemmaraju, and S. Sanvito. Polaronic distortion and vacancy-induced magnetism in MgO. Phys. Rev. B 81, 092403 (2010).

[15] Ruairi Hanafin, Thomas Archer, and Stefano Sanvito. Magnetism of wurtzite CoO nanoclusters. Phys. Rev. B 81, 054441 (2010).

[14] Lu Wang, , Xingfa Gao, Xin Yan, Jing Zhou, Zhengxiang Gao, Shigeru Nagase, Stefano Sanvito, Yutaka Maeda, Takeshi Akasaka, Wai Ning Mei, and Jing Lu. Half-Metallic Sandwich Molecular Wires with Negative Differential Resistance and Sign-Reversible High Spin-filter Efficiency. J. Phys. Chem. C 114, 21893 (2010).

[13] Guohui Ma, Xin Shen, Lili Sun, Peng Wei, Ruoxing Zhang, Stefano Sanvito, and Shimin Hou. Low-bias conductance of single benzene molecules contacted by direct Au-C and Pt-C bond. Nanotechnology 10, 495202 (2010).

[12] Bo Song, Stefano Sanvito, and Haiping Fang. Anomalous I-V curve in mono-atomic Carbon Chains. New J. Phys. 10, 103017 (2010).

[11] R. Kalantari-Nejad, M. Bahrami, H. Rafii-Tabar, I. Rungger, and Stefano Sanvito. Computational modeling of a carbon nanotube-based DNA nanosensor. Nanotechnology 21, 445501 (2010).

[10] Zhiyong Wang, Hong Li, Zheng Liu, Zujin Shi, Jing Lu, Kazutomo Suenaga, Soon-Kil Joung, Toshiya Okazaki, Zhennan Gu, Jing Zhou, Zhengxiang Gao, Guangping Li, Stefano Sanvito, Enge Wang, and Sumio Iijima. Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS2 Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes. J. Am. Chem. Soc. 132, 13840 (2010).

[9] X. Shen, L. Sun, E. Benassi, R. Zhang, Z. Shen, S. Sanvito, and S. Hou. Spin transport properties of 3d transition metal (II) phthalocyanines contacted with single-walled carbon nanotube electrodes. Phys. Chem. Chem. Phys. 12, 10805 (2010).

[8] Jing-Xin Yu, Xiang-Rong Chen, and Stefano Sanvito. Electronic transport across S9 sulfur clusters. Phys. Rev. B 82, 085415 (2010).

[7] Kun Tao, I. Rungger, S. Sanvito, and V.S. Stepanyuk. Quantum conductance of a single magnetic atom: an ab initio study. Phys. Rev. B 82, 085412 (2010).

[6] Anders Odell, Anna Delin, Brje Johansson, Ivan Rungger, and Stefano Sanvito. Investigation of the Conducting Properties of a Photoswitching Dithienylethene Molecule. ACS Nano 4, 2635 (2010).

[5] J. Zhou, H. Li, J. Lu, G.F. Luo, L. Lai, R. Qin, L. Wang, S. Nagase, Z.X. Gao, W.N. Mei, G.P. Li, D.P. Yu, and S. Sanvito. Selection of single-walled carbon nanotubes according to both their diameter and chirality via nanotweezers. Nano Res. 3, 296 (2010).

[4] A. Bilic, Z. Crljen, B. Gumhalter, J.D. Gale, and S. Sanvito. Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence. Phys. Rev. B 81, 155101 (2010).

[3] Zelong Yi, Xin Shen, Lili Sun, Ziyong Shen, Shimin Hou, and Stefano Sanvito. Tuning the magneto-transport properties of nickel-cyclopentadienyl multidecker clusters by molecule-electrode coupling manipulation. ACS Nano 4, 2274 (2010).

[2] R. Zhang, M. Bai, G.I. Ma, L. Sun, Z. Shen, X. Zhao, S. Hou, I. Rungger, and S. Sanvito. Electronic transport calculations for the conductance of Pt-1,4-phenylene diisocyanide-Pt molecular junctions. Nanotechnology 21, 155293 (2010).

[1] X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou. Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J. Chem. Phys. 132, 054703 (2010).

2009

[20] Andrea Droghetti, Nadjib Baadji, and Stefano Sanvito. MgN: a new promising material for spintronic applications. Phys. Rev. B 80, 235310 (2009).

[19] Sujeet K. Shukla and Stefano Sanvito. Electron transport across electrically switchable magnetic molecules. Phys. Rev. B 80, 184429 (2009).

[18] N. Baadji, M. Piacenza, T. Tugsuz, F. Della Sala, G. Maruccio, and S. Sanvito. Electrostatic spin crossover effect in polar magnetic molecules. Nature Materials 8, 813 (2009).

[17] C.D. Pemmaraju, I. Rungger, and S. Sanvito. Ab initio calculation of the bias-dependent transport properties of Mn12 molecules. Phys. Rev. B 80, 104422 (2009).

[16] Greg Szulczewski, Stefano Sanvito, and Michael Coey. A spin of their own. Nature Materials 8, 693 (2009).

[15] A. Droghetti and S. Sanvito. Electron doping and magnetic moment formation in N- and C-doped MgO. Appl. Phys. Lett. 94, 252505 (2009).

[14] C. Toher, I. Rungger, and S. Sanvito. Simulating STM transport in alkanes from first principles. Phys. Rev. B 79, 205427 (2009).

[13] Stefano Sanvito and C.D. Pemmaraju. Comment on “Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO”. Phys. Rev. Lett. 102, 159701 (2009).

[12] I. Rungger, O. Mryasov, and S. Sanvito. Resonant electronic states and I-V curves of Fe/MgO/Fe(100) tunnel junctions. Phys. Rev. B 79, 094414 (2009).

[11] W. Lee, N. Jean, and S. Sanvito. Exploring the limits of the self consistent Born approximation for inelastic electronic transport. Phys. Rev. B 79, 085120 (2009).

[10] Lin Lai, Jing Lu, Lu Wang, Guangfu Luo, Jing Zhou, Rui Qin, Yu Chen, Hong Li, Zhengxiang Gao, Guangping Li, Wai Ning Mei, Yutaka Maeda, Takeshi Akasaka, and Stefano Sanvito. Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons. Nano Res. 2, 844 (2009).

[9] X. H. Zheng, I. Rungger, Z. Zeng, and S. Sanvito. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Phys. Rev. B 80, 235426 (2009).

[8] C. Morari, A.R. Rocha, S. Sanvito, S. Melinte, and G.-M. Rignanese. Electronic transport properties of 1,1’-ferrocene dicarboxylic acid linked to Al(111) electrodes. ACS Nano 3, 4137 (2009).

[7] Xin Shen, Zelong Yi, Ziyong Shen, Xingyu Zhao, Jinlei Wu, Shimin Hou, and Stefano Sanvito.
The spin filter effect of iron-cyclopentadienyl multidecker clusters: the role of the electrode band structure and the coupling strength. Nanotechnology 20, 385401 (2009).

[6] Rouxing Zhang, Guohui Ma, Rui Li, Zekan Qian, Ziyong Shen, Xingyu Zhao, Shimin Hou, and Stefano Sanvito. Effects of spin-orbit coupling on the conductance of molecules contacted with gold electrodes. J. Phys.: Condens. Matter 21, 335301 (2009).

[5] Kun Tao, V.S. Stepanyuk, W. Hergert, I. Rungger, S. Sanvito, and P. Bruno. Switching a single spin on metal surfaces: ab initio studies. Phys. Rev. Lett. 103, 057202 (2009).

[4] X.Feng, O. Bengone, M. Alouani, I. Rungger, and S. Sanvito. Interface and transport properties of Fe/V/MgO/Fe and Fe/V/Fe/MgO/Fe magnetic tunneling junctions. Phys. Rev. B 79, 214432 (2009).

[3] M.M. Fadlallah, C. Schuster, U. Schwingenschloegl, T. Wunderlich, and S. Sanvito. Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au. J. Phys.: Condens. Matter 21, 315001 (2009).

[2] X.Feng, O. Bengone, M. Alouani, S. Lebegue, I. Rungger, and S. Sanvito. Effects of structural relaxation on calculations of the interface and transport properties of Fe/MgO(001) tunnel junctions. Phys. Rev. B 79, 174414 (2009).

[1] C. Cao, A. F. Kemper, L. Agapito, J.-W. Zhang, Y. He, A. Rinzler, H.-P. Cheng, X.-G. Zhang, A.R. Rocha, and Stefano Sanvito. Nonequilibrium Green’s function study of Pd4– cluster-functionalized carbon nanotubes as hydrogen sensors. Phys. Rev. B 79, 075127 (2009).

2008

[16] Andrea Droghetti, C.D. Pemmaraju, and Stefano Sanvito. Predicting d0 magnetism. Phys. Rev. B 78, 140404(R) (2008).

[15] J.M. Rondinelli, N.M. Caffrey, S. Sanvito, and N.A. Spaldin. Electronic properties of bulk and thin film SrRuO3: a search for the metal-insulator transition. Phys. Rev. B 78, 155107 (2008).

[14] Chaitanya Das Pemmaraju, R. Hanafin, T. Archer, B.H. Braun, and S. Sanvito. Impurity-Ion pair induced high-temperature ferromagnetism in Co-doped ZnO. Phys. Rev. B 78, 054428 (2008).

[13] I. Rungger and S. Sanvito. Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008).

[12] T. Archer, R. Hanafin, and S. Sanvito. Magnetism of CoO polymorphs: density functional theory and Monte Carlo simulations. Phys. Rev. B 78, 014431 (2008).

[11] C. Toher and S. Sanvito. Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. Phys. Rev. B 77, 155402 (2008).

[10] Chaitanya Das Pemmaraju, S. Sanvito, and K. Burke. Polarizability of molecular chains: A self-interaction correction approach. Phys. Rev. B 77, 121204(R) (2008).

[9] M. Stamenova, T.N. Todorov, and S. Sanvito. Newtonian origin of the spin motive force in ferromagnetic atomic wires. Phys. Rev. B 77, 054439 (2008).

[8] Hisao Nakamura, Koichi Yamashita, Alexandre. R. Rocha, and Stefano Sanvito. Efficient ab initio method for inelastic transport in nanoscale devices: Analysis of inelastic electron tunneling spectroscopy. Phys. Rev. B 78, 235420 (2008).

[7] Shimin Hou, Yanqing Chen, Xin Shen, Rui Li, Jing Ning, Zekan Qian, and Stefano Sanvito. High transmission in ruthenium-benzene-ruthenium molecular junctions. Chem. Phys. 354, 106 (2008).

[6] Lu Wang, Zixing Cai, Junyu Wang, Jing Lu, Guangfu Luo, Lin Lai, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, Guangping Li, Wai Ning Mei, and Stefano Sanvito. Novel One- Dimensional Organometallic Half Metals: Vanadium- Cyclopentadienyl, Vanadium-Cyclopentadienyl- Benzene, and Vanadium-Anthracene Wires. Nano Letters 8, 3640 (2008).

[5] Zekan Qian, Rui Li, Xingyu Zhao, Shimin Hou, and Stefano Sanvito. Conceptual molecular quantum phase transistor based on first-principles quantum transport calculations. Phys. Rev. B 78, 113301 (2008).

[4] Wei Fan, R.Q. Zhang, A. Reily Rocha, and Stefano Sanvito. Energy alignment induced negative differential resistance: The role of hybrid states in aromatic molecular devices. J. Chem. Phys. 129, 074710 (2008).

[3] J. Peralta-Ramos, A. M. Llois, I. Rungger, and S. Sanvito. I-V curves of Fe/MgO (001) single- and double-barrier tunnel junctions. Phys. Rev. B 78, 024430 (2008).

[2] G. Q. Li, J. Cai, J. K. Deng, A. R. Rocha, and S. Sanvito. The difference of the transport properties of graphene with corrugation structure and with flat structure. Appl. Phys. Lett. 92, 163104 (2008).

[1] H.H. Ralph, H. Scheicher, R. Pandey, A.R. Rocha, S. Sanvito, A. Grigoriev, R. Ahuja, and S.P. Karna. Functionalized nanopore-embedded electrodes for rapid DNA sequencing. J. Phys. Chem. C 112, 3456 (2008).

2007

[13] S. Sanvito. Spintronics goes plastic. Nature Materials (News & Views) 6, 803 (2007).

[12] S. Sanvito. Injecting and controlling spins in organic materials. J. Mater. Chem. (Highlight) 17, 4455 (2007).

[11] A. R. Rocha, T. Archer, and S. Sanvito. Search for magnetoresistance in excess of 1000% in Ni point contacts: Density functional calculations. Phys. Rev. B 76, 054435 (2007).

[10] C. Toher and S. Sanvito. Efficient atomic self-interaction scheme for non-equilibrium transport. Phys. Rev. Lett. 99, 056801 (2007).

[9] A. Akande and S. Sanvito. Exchange parameters from approximate self-interaction correction scheme. J. Chem. Phys. 127, 034112 (2007).

[8] A.R. Rocha and S. Sanvito. Resonant magnetoresistance in organic spin-valves. J. Appl. Phys. 101, 09B102 (2007).

[7] S. Sanvito. Memoirs of a spin. Nature Nanotechnology (News & Views) 2, 204 (2007).

[6] V. Nicolosi, P.D. Nellist, S. Sanvito, E.C. Cosgriff, S. Krishnamurthy, W.J. Blau, M.L.H. Green, D. Vengust, D. Dvorsek, D. Mihailovic, G. Compagnini, J. Sloan, V. Stolojan, J.D. Carey, S.J. Pennycook, and J.N. Coleman. Observation of van der Waals driven self-assembly of MoSI nanowires into a low symmetry structure using aberration corrected electron microscopy. Adv. Mater. 19, 543 (2007).

[5] S. Athanasopoulos, S. W. Bailey, J. Ferrer, V. M. Garcia Suarez, C. J. Lambert, A. R. Rocha, and S. Sanvito. Giant Magnetoresistance of Nickel-contacted Carbon Nanotubes. J. Phys. Condens. Matter. 19, 042201 (2007).

[4] C. Das Pemmaraju, T. Archer, D. Sanchez-Portal, and S. Sanvito. Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids. Phys. Rev. B 75, 045101 (2007).

[3] Z. Qian, R. Li, S. Hou, Z. Xue, and S. Sanvito. An efficient NEGF+DFT approach for calculating electron transport properties of molecular devices with quasi-one dimensional electrodes. J. Chem. Phys. 127, 194710 (2007).

[2] Jing Ning, Zekan Qian, Rui Li, Shimin Hou, A. R. Rocha, and S. Sanvito. Effect of the continuity of the π-conjugation on the conductance of ruthenium-octene-ruthenium molecular junctions. J. Chem. Phys. 126, 174706, (2007).

[1] Jing Ning, Rui Li, Zekan Qian, Shimin Hou, A. R. Rocha, and S. Sanvito. Which orbital contributes to the zero-bias conductance of an Au/1,4-diaminobenzene/Au molecular junction? Nanotechnology 18, 345203 (2007).

2006

[8] L. Fernandez Seivane, M.A. Oliveira, S. Sanvito, and J. Ferrer. On-site approximation for spin-orbit interaction in DFT. J. Phys.: Condens. Matter 18, 7999 (2006).

[7] I. Rungger and S. Sanvito. Ab initio study on the magnetostructural properties of MnAs. Phys. Rev. B 74, 024429 (2006).

[6] S. Sanvito and A.R. Rocha. Molecular-Spintronics: the art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624 (2006).

[5] C. O’Reilly, S. Sanvito, F.M.F. Rhen, P. Stamenov, and J.M.D. Coey. Magnetization of electrodeposited nickel: Role of interstitial carbon. J. Appl. Phys. 99, 08J301 (2006).

[4] C. Sanchez, M. Stamenova, S. Sanvito, D.R. Bowler, A.P. Horsfield, and T. Todorov. Molecular conduction: Do time-dependent simulations tell you more than the Landauer approach? J. Chem. Phys. 124, 214708 (2006).

[3] M. Stamenova, S. Sahoo, C. G. Sanchez, T. N. Todorov, and S. Sanvito. Magneto-mechanical interplay in spin-polarized point contacts. Phys. Rev. B 73, 094439 (2006).

[2] N. Jean and S.Sanvito. Inelastic transport in molecular spin valves. Phys. Rev. B 73, 094433 (2006).

[1] A.R. Rocha, V.M. Garcia Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, and S. Sanvito. Spin and Molecular Electronics in Atomically-Generated Orbital Landscapes. Phys. Rev. B 73, 085414 (2006).

2005

[8] V.M. Garcıa-Suarez, A.R. Rocha, S.W. Bailey, C.J. Lambert, S. Sanvito, and J. Ferrer. Conductance oscillations in zigzag platinum chains-suppression of parity effects. Phys. Rev. Lett. 95, 256804 (2005).

[7] C. Toher, A. Filippetti, S. Sanvito, and K. Burke. Self-interaction errors in density functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005).

[6] M. Stamenova, S. Sanvito, and T. Todorov. Current-driven magnetic rearrangements in spin-polarized point contacts. Phys. Rev. B 72, 134407 (2005).

[5] F. Iikawa, M.J.S.P.Brasil, C. Adriano, O.D.D. Couto, C. Giles, P.V. Santos, L.Daerwitz, I. Rungger, and S. Sanvito. Lattice distortion effects on the magneto-structural phase transition of MnAs. Phys. Rev. Lett. 95, 077203 (2005).

[4] C. Das Pemmaraju and S. Sanvito. HfO2: a new direction for intrinsic defect driven ferro-magnetism. Phys. Rev. Lett. 94, 217205 (2005).

[3] V.M. Garcıa-Suarez, A.R. Rocha, S.W. Bailey, C.J. Lambert, S. Sanvito, and J. Ferrer. Single-channel conductance of H2 molecules attached to platinum or palladium electrodes. Phys. Rev. B 72, 045437 (2005).

[2] A.R. Rocha, V.M. Garcia Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, and S. Sanvito. Towards molecular spintronics. Nature Materials 4, 335 (2005).

[1] F. Taddei, S. Sanvito, and C. J. Lambert. Material-specific spin filtering in ferromagnet/superconductor ballistic nanojunctions. J. Comput. Theor. Nanosci. 2, 132 (2005).

2004

[7] J.M.D. Coey and S. Sanvito. The magnetism of Carbon. Physics World, November, (2004).

[6] A. R. Rocha and S. Sanvito. Asymmetric I-V characteristics and magnetoresistance in magnetic point contacts. Phys. Rev. B 70, 094406 (2004).

[5] M. Wierzbowska, D. Sanchez-Portal, and S. Sanvito. Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N. Phys. Rev. B 70, 235209 (2004).

[4] A. Filippetti, N. A. Spaldin, and S. Sanvito. Self-interaction effects in (Ga,Mn)As and (Ga,Mn)N. Chem. Phys. 309, 59 (2004).

[3] O. Cespedes, M.S. Ferreira, S. Sanvito, M. Kociak, and J.M.D. Coey. Contact-induced magnetism in carbon nanotubes. J. Phys.: Condens. Matter 16, L155 (2004).

[2] J. M. D. Coey and S. Sanvito. Magnetic Semiconductors and half-metals. J. Phys. D: Appl. Phys. 37, 988 (2004).

[1] M. S. Ferreira and S. Sanvito. Contact-induced spin polarization in carbon nanotubes. Phys. Rev. B 69, 035407 (2004).

2003

[1] S. Sanvito. Ferromagnetism and metallic state in digital (Ga,Mn)As heterostructures. Phys. Rev. B 68, 054425 (2003).

2002

[2] S. Sapra, D. D. Sarma, S. Sanvito, and Nicola A. Hill. Influence of quantum confinement on the ferromagnetism of (Ga,Mn)As diluted magnetic semiconductor. Nano Letters 2, 605 (2002).

[1] S. Sanvito, G. J. Theurich, and Nicola A. Hill. Density Functional Calculations for III- V Diluted Ferromagnetic Semiconductors: A Review. J. of Superconductivity and Novel Magnetism 15, 85 (2002).

2001

[5] S. Sanvito and Nicola A. Hill. Ab initio transport theory for digital ferromagnetic heterostructures. Phys. Rev. Lett. 87, 267202 (2001).

[4] F. Taddei, S. Sanvito, and C. J. Lambert. Spin polarized transport in F/S nanojunctions. J. Low. Temp. Phys. 124, 305 (2001).

[3] S. Sanvito and Nicola A. Hill. Influence of the local As antisite distribution on ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 78, 3493 (2001).

[2] S. Sanvito, P. Ordejon, and N.A. Hill. First Principle study of the origin and nature of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 63, 165206 (2001).

[1] F. Taddei, S. Sanvito, and C. J. Lambert. Enhancement of GMR due to spin-mixing in magnetic multilayers with a superconducting contact. Phys. Rev. B 63, 12404 (2001).

2000

[4] S. Sanvito and Nicola A. Hill. Ground state of half-metallic zincblende MnAs. Phys. Rev. B 62, 15553 (2000).

[3] S. Sanvito, Y.-K. Kwon, D. Tomanek, and C.J. Lambert. Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000).

[2] S. Sanvito, C. J. Lambert, and J. H. Jefferson. Breakdown of the resistor model of CPP-GMR in magnetic multilayered nanostructures. Phys. Rev. B 61, 14225 (2000).

[1] R. Seviour, S. Sanvito, C. J. Lambert, and J. H. Jefferson. Anomalous magnetoresistance of magnetic multilayers. J. Phys.: Cond. Matter 12, L621 (2000).

1999

[3] S. Sanvito, C. J. Lambert, and J. H. Jefferson. Crossover between ballistic and diffusive regime of the spin-conductance and CPP-GMR in magnetic multilayered nanostructures. Phys. Rev. B 60, 7385 (1999).

[2] F. Taddei, S. Sanvito, C. J. Lambert, and J. H. Jefferson. Suppression of Giant Magnetoresistance by a superconducting contact. Phys. Rev. Lett. 82, 4938 (1999).

[1] S. Sanvito, C. J. Lambert, J. H. Jefferson, and A.M. Bratkovsky. General Green’s function formalism for transport calculations with spd-Hamiltonians and giant magnetoresistance in Co and Ni based magnetic multilayers. Phys. Rev. B 59, 11936 (1999).

1998

[2] S. Sanvito, C. J. Lambert, J. H. Jefferson, and A.M. Bratkovsky. Conductance Oscillations in transition metal superlattices. J. Phys.: Cond. Matter 10, L691 (1998).

[1] E. Del Giudice, R. Mele, G. Preparata, S. Sanvito, and F. Fontana. A Further Look at Waveguide Lasers. IEEE J. Quant. Elect. 34, 2403 (1998).

Books

[3] A. de Melo Souza, I. Rungger, and S. Sanvito. Molecular Electronics: First Principles and Model Approaches. LAP Lambert Academic Publishing, Saarbrucken (Germany), 2016.

[2] A.R. Rocha and S. Sanvito. Electronic transport at the nanoscale: Theoretical and computational aspects. LAP Lambert Academic Publishing, Saarbrucken (Germany), 2010.

[1] S. Sanvito, O. Heinonen, V. Dediu, and N. Rizzo. Novel Materials and Devices for Spintronics, in “MRS Symposium Proceeding Series”, Volume 1183. Materials Research Society, Warrendale, Pennsylvania (USA), 2009.

Book Chapters

[9] Carlo Motta Sergey Rashkeev Stefano Sanvito Fedwa El Mellouhi, Fahhad H. Alharbi and Sabre Kais. Toward the Computational Design of Pb-Free and Stable Hybrid Materials for So- lar Cells, in “Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications”. Edited by Giacomo Giorgi and Koichi Yamashita, Taylor and Francis Group, Routledge, 2017.

[8] Yunkun Xie, Ivan Rungger, Kamaram Munira, Maria Stamenova, Stefano Sanvito and Avik W. Ghosh, Spin Transfer Torque: A Multiscale Picture, in “Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing”, Wiley (2016).

[7] Anna Pertsova, Carlo Maria Canali, Mark R. Pederson, Ivan Rungger, and Stefano Sanvito. Electronic Transport as a Driver for Self-Interaction-Corrected Methods, volume 64 of Advances In Atomic, Molecular, and Optical Physics. Burlington: Academic Press, Ennio Arimondo, Chun C. Lin and Susanne F. Yelin, editors, 2015.

[6] S. Sanvito. Electron Transport Theory for Large Systems, in “Computational Nanoscience”, RSC Theoretical and Computational Chemistry Series. The Royal Society of Chemistry, UK, 2011.

[5] Stefano Sanvito. Molecular Spintronics, in “Handbook of Spin Transport and Magnetism”. CRC Press, Taylor and Francis, US, 2010.

[4] M. Stamenova and S. Sanvito. Atomistic Spin Dynamics. in “The Oxford Handbook of Nanoscience and Nanotechnology: Vol. I”. Oxford University Press, Oxford, 2009.

[3] S. Sanvito and A. R. Rocha. Computational Spintronics in highly confined systems, volume 42-46 of Advances in Science and Technology. Techna Group Publishers, Faenza (Italy), 2004.

[2] S. Sanvito. Ab initio methods for spin transport at nanoscale level, in “Handbook of Computational Nanotechnology”. American Scientific Publishers, Stevenson Ranch, California, 2004.

[1] S. Sanvito, Y.-K. Kwon, D. Tomanek, and C.J. Lambert. Quantum transport in inhomogeneous multi-wall nanotubes, in “Science and Application of Nanotubes”. Kluwer Academic Publishing/Plenum Press, eds. D. Tomanek, R.J. Enbody, New York, 2000.

Proceedings

[17] Ruairi Hanafin and Stefano Sanvito. Oxygen defect origin of ferromagnetism in ZnCoO. J. Magn. Magn. Mater. 322, 1209 (2010).

[16] R. Hanafin, C.D. Pemmaraju, T. Archer, and S. Sanvito. Defect-related origin of the ferro-magnetism in ZnO:Co. Acta Physica Polonica A 115, 263 (2009).

[15] C. Das Pemmaraju, T. Archer, R. Hanafin, and S. Sanvito. Investigation of n-type donor defects in Co doped ZnO. J. Magn. Magn. Mater. 316, e185 (2007).

[14] R. Hanafin and S. Sanvito. Monte Carlo simulations of donor band exchange in (Zn,Co)O. J. Magn. Magn. Mater. 316, 218 (2007).

[13] I. Rungger, A.R. Rocha, O. Mryasov, O. Heinonen, and S. Sanvito. Electronic Transport through Fe/MgO/Fe(100) Tunnel Junctions. J. Magn. Magn. Mater. 316, 481 (2007).

[12] T. Archer, C. Das Pemmaraju, and S. Sanvito. Magnetic properties of ZrO2 diluted magnetic semiconductors. J. Magn. Magn. Mater. 316, e188 (2007).

[11] M. Stamenova, S. Sahoo, T.N. Todorov, and Stefano Sanvito. Structure-related effects on the domain wall migration in atomic point contacts. J. Magn. Magn. Mater. 316, e934 (2007).

[10] I. Rungger, A.R. Rocha, O. Mryasov, O. Heinonen, and S Sanvito. Bias Dependent TMR in Fe/MgO/Fe(100) Tunnel Junctions. MRS Proceedings 941E, 0941–Q01–03 (2006).

[9] I. Rungger and S. Sanvito. First Principles Study of the Phase Transitions of MnAs. MRS Proceedings 941E, 0941–Q08–17 (2006).

[8] M. S. Ferreira and S. Sanvito. Magnetic proximity effect in carbon nanotubes. J. Magn. Magn. Mater. 290-291, 286 (2005).

[7] A. Filippetti, N. A. Spaldin, and S. Sanvito. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N. J. Magn. Magn. Mater. 290-291, 1391 (2005).

[6] Stefano Sanvito. (Ga,Mn)As/AlAs digital ferromagnetic heterostructures. J. Magn. Magn. Matter 272-276, e1583 (2004).

[5] O. Cespedes, A. R. Rocha S. Lioret, M. Viret, C. Dennis, J. F. Gregg, S. van Dijken, S. Sanvito, and J. M. D. Coey. I-V asymmetry and magnetoresistance in nickel nanoconstrictions. J. Magn. Magn. Matter 272-276, 1571 (2004).

[4] S. Sanvito and Nicola A. Hill. First principle study of intrinsic defects in (Ga,Mn)As. J. Magn. Magn. Mater. 242-245, 411 (2002).

[3] S. Sanvito and Nicola A. Hill. Prediction of enhanced ferromagnetism in (Ga,Mn)As by intrinsic defect manipulation. J. Magn. Magn. Mater. 238, 252 (2002).

[2] S. Sanvito, C. J. Lambert, and J. H. Jefferson. Systematic study of ballistic GMR in magnetic multilayers through the 3d, 4d and 5d transition metals. J. Magn. Magn. Mater. 203/1-3, 105 (1999).

[1] S. Sanvito, C. J. Lambert, and J. H. Jefferson. GMR in 3d, 4d and 5d transition metal multilayers. J. Magn. Magn. Mater. 196-197, 101 (1999).